Chuang Li, Chuan-yao Sun, Yu-lian Wang, Ya-feng Fu, Peng-yun Xu, and Wan-zhong Yin, Research on new beneficiation process of low-grade magnesite using vertical roller mill, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 432-442. https://doi.org/10.1007/s12613-019-1898-2
Cite this article as:
Chuang Li, Chuan-yao Sun, Yu-lian Wang, Ya-feng Fu, Peng-yun Xu, and Wan-zhong Yin, Research on new beneficiation process of low-grade magnesite using vertical roller mill, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 432-442. https://doi.org/10.1007/s12613-019-1898-2
Research Article

Research on new beneficiation process of low-grade magnesite using vertical roller mill

+ Author Affiliations
  • Corresponding authors:

    Peng-yun Xu    E-mail: xupengyun01@163.com

    Wan-zhong Yin    E-mail: yinwanzhong@mail.neu.edu.cn

  • Received: 30 May 2019Revised: 26 September 2019Accepted: 27 September 2019Available online: 14 February 2020
  • We investigated whether the vertical roller mill can be efficiently used in the beneficiation of low-grade magnesite and whether it can improve upon the separation indices achieved by the ball mill. We conducted experiments involving the reverse flotation and positive flotation of low-grade magnesite to determine the optimum process parameters, and then performed closed-circuit beneficiation experiments using the vertical roller mill and ball mill. The results show that the optimum process parameters for the vertical roller mill are as follows: a grinding fineness of 81.6wt% of particles less than 0.074 mm, a dodecyl amine (DDA) dosage in magnesite reverse flotation of 100 g·t−1, and dosages of Na2CO3, (NaPO3)6, and NaOL in the positive flotation section of 1000, 100, and 1000 g·t−1, respectively. Compared with the ball mill, the use of the vertical roller mill in the beneficiation of low-grade magnesite resulted in a 1.28% increase in the concentrate grade of MgO and a 5.88% increase in the recovery of MgO. The results of our causation mechanism analysis show that a higher specific surface area and greater surface roughness are the main reasons for the better flotation performance of particles ground by the vertical roller mill in the beneficiation of low-grade magnesite.

  • loading
  • [1]
    I. Bentli, N. Erdogan, N. Elmas, and M. Kaya, Magnesite concentration technology and caustic–calcined product from Turkish magnesite middlings by calcination and magnetic separation, Sep. Sci. Technol., 52(2017), No. 6, p. 1129. doi: 10.1080/01496395.2017.1281307
    [2]
    H. Zhang, W.G. Liu, C. Han, and D.Z. Wei, Intensify dodecylamine adsorption on magnesite and dolomite surfaces by monohydric alcohols, Appl. Surf. Sci., 444(2018), p. 729. doi: 10.1016/j.apsusc.2018.03.124
    [3]
    D. Misch, H. Pluch, H. Mali, F. Ebner, and H. Hui, Genesis of giant Early Proterozoic magnesite and related talc deposits in the Mafeng area, Liaoning Province, NE China, J. Asian Earth Sci., 160(2018), p. 1. doi: 10.1016/j.jseaes.2018.04.005
    [4]
    Z. Zhao, X.L. Cui, D.H. Wang, Y.C. Chen, G. Bai, J.K. Li, and X.X. Liu, Review of the metallogenic regularity of magnesite deposits in China, Acta Geol. Sin., 89(2015), No. 5, p. 1747. doi: 10.1111/1755-6724.12576
    [5]
    I. Brezáni, J. Škvarla, and M. Sisol, Reverse froth flotation of magnesite ore by using (12-4-12) cationic gemini surfactant, Miner. Eng., 110(2017), p. 65. doi: 10.1016/j.mineng.2017.04.013
    [6]
    Q. Teng, Y.L. Feng, and H.R. Li, Effects of silicate-bacteria pretreatment on desiliconization of magnesite by reverse flotation, Colloids Surf.,A, 544(2018), p. 60. doi: 10.1016/j.colsurfa.2018.02.022
    [7]
    H. Zhang, W.G. Liu, C. Han, and H.Q. Hao, Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate, J. Mol. Liq., 249(2018), p. 1060. doi: 10.1016/j.molliq.2017.11.148
    [8]
    W.H. Sun, S.J. Dai, W.G. Liu, and L.T. Yu, Study on removing impurity from magnesite ore by two step reverse flotation, Bulg. Chem. Commun., 49(2017), No. 3, p. 678.
    [9]
    J. Yao, W. Yin, and E. Gong, Depressing effect of fine hydrophilic particles on magnesite reverse flotation, Int. J. Miner. Process., 149(2016), p. 84. doi: 10.1016/j.minpro.2016.02.013
    [10]
    Q.Y. Sun, W.Z. Yin, D. Li, Y.F. Fu, J.W. Xue, and J. Yao, Improving the sulfidation−flotation of fine cuprite by hydrophobic flocculation pretreatment, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1256. doi: 10.1007/s12613-018-1678-4
    [11]
    Y.P. Niu, C.Y. Sun, W.Z. Yin, X.R. Zhang, H.F. Xu, and X. Zhang, Selective flotation separation of andalusite and quartz and its mechanism, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1059. doi: 10.1007/s12613-019-1842-5
    [12]
    Y.F. Fu, Z.L. Zhu, J. Yao, H.L. Han, W.Z. Yin, B. Yang, Improved depression of talc in chalcopyrite flotation using a novel depressant combination of calcium ions and sodium lignosulfonate, Colloids Surf. ,A, 558(2018), p. 88. doi: 10.1016/j.colsurfa.2018.08.056
    [13]
    P.Y. Xu, C. Hu, M. Gan, J. Li, X. Pan, and H.Q. Ye, Analyses on uniformity of particles under HPGR finished grinding system, J. Cent. South Univ., 25(2018), No. 5, p. 1003. doi: 10.1007/s11771-018-3800-1
    [14]
    P. Prziwara, L.D. Hamilton, S. Breitung-Faes, and A. Kwade, Impact of grinding aids and process parameters on dry stirred media milling, Power Technol., 335(2018), p. 114. doi: 10.1016/j.powtec.2018.05.021
    [15]
    L. Little, A.N. Mainza, M. Becker, and J. Wiese, Fine grinding: How mill type affects particle shape characteristics and mineral liberation, Miner. Eng., 111(2017), p. 148. doi: 10.1016/j.mineng.2017.05.007
    [16]
    M. Reichert, C. Gerold, A. Fredriksson, G. Adolfsson, and H. Liebewirth, Research of iron ore grinding in a vertical-roller-mill, Miner. Eng., 73(2015), p. 109. doi: 10.1016/j.mineng.2014.07.021
    [17]
    L.R.D. Jensen, H. Friis, E. Fundal, P. Møller, P.B. Brockhoff, and M. Jespersen, Influence of quartz particles on wear in vertical roller mills. Part I: Quartz concentration, Miner. Eng., 23(2010), No. 5, p. 390. doi: 10.1016/j.mineng.2009.11.014
    [18]
    K. Boussu, B. van der Bruggen, A. Volodin, J. Snauwaert, C.V. Haesendonck, and C. Vandecasteele, Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM, J. Colloid Interface Sci., 286(2005), No. 2, p. 632. doi: 10.1016/j.jcis.2005.01.095
    [19]
    Z. Xie, H. Jiang, Z.C. Sun, and Q.H. Yang, Direct AFM measurements of morphology and interaction force at solid-liquid interfaces between DTAC/CTAC and mica, J. Cent. South Univ., 23(2016), No. 9, p. 2182. doi: 10.1007/s11771-016-3275-x
    [20]
    M.J. Jaycock and G.D. Parfitt, Chemistry of Interfaces, Ellis Horwood, Chichester, 1981.
    [21]
    Q.Y. Meng, Q.M. Feng, and L.M. Ou, Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid, J. Cent. South Univ., 23(2016), No. 6, p. 1339. doi: 10.1007/s11771-016-3185-y
    [22]
    Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113. doi: 10.1007/s12613-018-1662-z
    [23]
    C.B. Zhong, C.L. Xu, R.L. Lyu, Z.Y. Zhang, X.Y. Wu, and R.A. Chi, Enhancing mineral liberation of a Canadian rare earth ore with microwave pretreatment, J. Rare Earths, 36(2018), No. 2, p. 215. doi: 10.1016/j.jre.2017.08.007
    [24]
    W.M. Xie, Y.Q. He, H. Li, Y. Zhang, and X.N. Zhu, Investigation of the energy-size reduction and mineral liberation of raw coal in the Hardgrove mill, Energy Sources Part A, 40(2018), No. 4, p. 446. doi: 10.1080/15567036.2017.1423415
    [25]
    X.M. Wang and J.D. Miller, Dodecyl amine adsorption at different interfaces during bubble attachment-detachment at a silica surface, Physicochem. Probl. Miner. Process., 54(2018), No. 1, p. 81.
    [26]
    X.F. Cao, C.M. Liu, and Y.H. Hu, Flotation of kaolinite with dodecyl tertiary amines, J. Cent. South Univ. Technol., 16(2009), No. 5, p. 749. doi: 10.1007/s11771-009-0124-1
    [27]
    D. Li, W.Z. Yin, J.W. Xue, J. Yao, Y.F. Fu, and Q. Liu, Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 736. doi: 10.1007/s12613-017-1457-7
    [28]
    S. Rahimi, M. Irannajad, and A. Mehdilo, Effects of sodium carbonate and calcium chloride on calcite depression in cationic flotation of pyrolusite, Trans. Nonferrous Met. Soc. China, 27(2017), No. 8, p. 1831. doi: 10.1016/S1003-6326(17)60206-1
    [29]
    C. Liu, Q.M. Feng, G.F. Zhang, W. Chen, and Y.F. Chen, Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector, Int. J. Miner. Process., 157(2016), p. 210. doi: 10.1016/j.minpro.2016.11.011
    [30]
    A. Ramirez, A. Rojas, L. Gutierrez, and J.S. Laskowski, Sodium hexametaphosphate and sodium silicate as dispersants to reduce the negative effect of kaolinite on the flotation of chalcopyrite in seawater, Miner. Eng., 125(2018), p. 10. doi: 10.1016/j.mineng.2018.05.008
    [31]
    Q.C. Feng, S.M. Wen, W.J. Zhao, and Y. Chen, Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation, Sep. Purif. Technol., 200(2018), p. 300. doi: 10.1016/j.seppur.2018.02.048
    [32]
    R.J. Zheng, Z.J. Ren, H.M. Gao, Z.J. Chen, Y.P. Qian, and Y.B. Li, Effects of crystal chemistry on sodium oleate adsorption on fluorite surface investigated by molecular dynamics simulation, Miner. Eng., 124(2018), p. 77. doi: 10.1016/j.mineng.2018.05.017
    [33]
    X.M. Luo, Y.F. Wang, M.Z. Ma, S.X. Song, Y. Zhang, J.S. Deng, and J. Liu, Role of dissolved mineral species in quartz flotation and siderite solubility simulation, Physicochem. Probl. Miner. Process., 53(2017), No. 1, p. 1241.
    [34]
    L.Y. Liu, F.F. Min, J. Chen, F.Q. Lu, and L. Shen, The adsorption of dodecylamine and oleic acid on kaolinite surfaces: Insights from DFT calculation and experimental investigation, Appl. Surf. Sci., 470(2019), p. 27. doi: 10.1016/j.apsusc.2018.11.104
    [35]
    P.Y. Xu, J. Li, C. Hu, Z. Chen, H.Q. Ye, Z.Q. Yuan, and W.J. Cai, Surface property variations in flotation performance of calcite particles under different grinding patterns, J. Cent. South Univ., 25(2018), No. 6, p. 1306. doi: 10.1007/s11771-018-3827-3
    [36]
    A. Patwardhan and R.Q. Honaker, Development of a carrying-capacity model for column froth flotation, Int. J. Miner. Process., 59(2000), No. 4, p. 275. doi: 10.1016/S0301-7516(99)00081-2
    [37]
    M. Rahimi, M.R. Aslani, and B. Rezai, Influence of surface roughness on flotation kinetics of quartz, J. Cent. South Univ., 19(2012), No. 5, p. 1206. doi: 10.1007/s11771-012-1130-2
    [38]
    L.H. Xu, Y.H. Hu, H.Q. Wu, J. Tian, J. Liu, Z.Y. Gao, and L. Wang, Surface crystal chemistry of spodumene with different size fractions and implications for flotation, Sep. Purif. Technol., 169(2016), p. 33. doi: 10.1016/j.seppur.2016.06.005
    [39]
    Y.H. Hu, Z.Y. Gao, W. Sun, and X.W. Liu, Anisotropic surface energies and adsorption behaviors of scheelite crystal, Colloids Surf., A, 415(2012), p. 439. doi: 10.1016/j.colsurfa.2012.09.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1761) PDF Downloads(86) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return