Yang Cao, Dan-dan Zhang, Pei-jun Zhou, Kun Liu, Wu-yi Ming, and Jun Ma, Reinforcing effect of laminate structure on the fracture toughness of Al3Ti intermetallic, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 678-686. https://doi.org/10.1007/s12613-019-1899-1
Cite this article as:
Yang Cao, Dan-dan Zhang, Pei-jun Zhou, Kun Liu, Wu-yi Ming, and Jun Ma, Reinforcing effect of laminate structure on the fracture toughness of Al3Ti intermetallic, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 678-686. https://doi.org/10.1007/s12613-019-1899-1
Research Article

Reinforcing effect of laminate structure on the fracture toughness of Al3Ti intermetallic

+ Author Affiliations
  • Corresponding author:

    Jun Ma    E-mail: zzulimajun@126.com

  • Received: 20 May 2019Revised: 17 September 2019Accepted: 18 September 2019Available online: 2 March 2020
  • Metal/intermetallic laminate composites can improve the mechanical properties of intermetallic materials using metal layers. In recent years, titanium aluminide intermetallics have received increasing attention due to their excellent performance properties, such as high melting point, high specific strength and stiffness, and good corrosion resistance. However, the low fracture toughness of Al3Ti alloys at room temperature has greatly limited their application, and fiber or particle reinforcement has not shown a significant toughening effect. Research into the reinforcing effects of the interface and near-interface zone on the fracture behavior of Al3Ti is lacking. Ti/Al3Ti metal/intermetallic laminate composite was synthesized from titanium and aluminum foils using vacuum hot-pressed sintering technology. The microstructure of the prepared material was analyzed by scanning electron microscope and electron backscattered diffraction. Results illustrate that both Ti and Al3Ti were single-phase and there was a noticeable stress concentration on the interface. To obtain indentation and cracks, loads were applied to different locations of the composite by a microhardness tester. The growth path of the cracks was then observed under microscope, showing that crack propagation was prevented by the interface between the Ti and Al3Ti layers, and the cracks that propagated parallel to the laminate shifted to the interface. Fracture toughness of the different areas, including Al3Ti layers, interface, and near-interface zone, were measured by the indentation fracture method. The fracture toughness at and near the interface was 1.7 and 2 times that of the Al3Ti layers, respectively. Results indicate that crack blunting and crack front convolution by the laminate structure was primarily responsible for increased toughness.

  • loading
  • [1]
    R.R. Adharapurapu, K.S. Vecchio, F.C. Jiang, and A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti–Al3Ti metal–intermetallic laminate composites, Metall. Mater. Trans. A, 36(2005), No. 6, p. 1595. doi: 10.1007/s11661-005-0251-8
    [2]
    A. Rohatgi, D.J. Harach, K.S. Vecchio, and K.P. Harvey, Resistance-curve and fracture behavior of Ti–Al3Ti metallic–intermetallic laminate (MIL) composites, Acta. Mater., 51(2003), No. 10, p. 2933. doi: 10.1016/S1359-6454(03)00108-3
    [3]
    M. Tayyebi and B. Eghbali, Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 357. doi: 10.1007/s12613-018-1579-6
    [4]
    O. Emadinia, S. Simões, F. Viana, and M.F. Vieira, Ni/Ti and Ni/Al laminated composites produced by ARB and annealing: Microstructural aspects, Microsc. Microanal., 21(2015), No. S5, p. 23. doi: 10.1017/S1431927615013926
    [5]
    I. V.Okulov, U. Kühn, T. Marr, J. Freudenberger, L. Schultz, C.G. Oertel, W. Skrotzki, and J. Eckert, Deformation and fracture behavior of composite structured Ti–Nb–Al–Co(–Ni) alloys, Appl. Phys. Lett., 104(2014), No. 7, art. No. 071905.
    [6]
    R. Jafari and B. Eghbali, Study on the reaction mechanism and intermetallic compound formation in tri-metal Ti/Al/Nb composite, J. Alloys Compd., 741(2018), p. 1030. doi: 10.1016/j.jallcom.2018.01.137
    [7]
    M. Hojo, N. Iwasaki, F. Sekino, S. Ochiai, S. Sakai, and K. Watanabe, Fracture behavior under fatigue loading at room temperature and its influence on critical current of Nb–Ti/Cu composite wire, Cryogenics, 39(1999), No. 7, p. 627. doi: 10.1016/S0011-2275(99)00083-1
    [8]
    N. Kahraman and B.S. Gülenç, Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process, J. Mater. Process. Technol., 169(2005), No. 1, p. 67. doi: 10.1016/j.jmatprotec.2005.02.264
    [9]
    B.X. Liu, L. Geng, X.L. Dai, F.X. Yin, and L.J. Huang, Multiple toughening mechanisms of laminated Ti–TiBw/Ti composites fabricated by diffusion welding, Mater. Sci. Forum, 848(2016), p. 196. doi: 10.4028/www.scientific.net/MSF.848.196
    [10]
    N.V. Rao, G.M. Reddy, and S. Nagarjuna, Structure and properties of explosive clad HSLA steel with titanium, Trans. Indian Inst. Met., 67(2014), No. 1, p. 67. doi: 10.1007/s12666-013-0313-3
    [11]
    I.K. Kim and S.I. Hong, Roll-bonded tri-layered Mg/Al/stainless steel clad composites and their deformation and fracture behavior, Metall. Mater. Trans. A, 44(2013), No. 8, p. 3890. doi: 10.1007/s11661-013-1697-8
    [12]
    W.C. Jiang, J.M. Gong, and S.T. Tu, A new cooling method for vacuum brazing of a stainless steel plate–fin structure, Mater. Des., 31(2010), No. 1, p. 648. doi: 10.1016/j.matdes.2009.04.039
    [13]
    R. Kacar and M. Acarer, An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel, J. Mater. Process. Technol., 152(2004), No. 1, p. 91. doi: 10.1016/j.jmatprotec.2004.03.012
    [14]
    E. Zamani and G.H. Liaghat, Explosive welding of stainless steel–carbon steel coaxial pipes, J. Mater. Sci., 47(2012), No. 2, p. 685. doi: 10.1007/s10853-011-5841-9
    [15]
    Y.A. Jing, Y. Qin, X.M. Zang, and Y.H. Li, The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere, J. Mater. Process. Technol., 214(2014), No. 8, p. 1686. doi: 10.1016/j.jmatprotec.2014.03.019
    [16]
    S.A.A.A. Mousavi and P.F. Sartangi, Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite, Mater. Sci. Eng. A, 494(2008), No. 1-2, p. 329. doi: 10.1016/j.msea.2008.04.032
    [17]
    J. Soyama, M. Oehring, T. Ebel, K.U. Kainer, and F. Pyczak, Sintering behavior and microstructure formation of titanium aluminide alloys processed by metal injection molding, JOM, 69(2017), No. 4, p. 676. doi: 10.1007/s11837-016-2252-z
    [18]
    Y. Cao, N.X. Wei, X.X. Han, C.H. Guo, J.G. Du, W.B. He, J. Ma, and F.C. Jiang, Mechanical response of titanium tri-aluminide intermetallic alloy, Mater. Sci. Eng. A, 706(2017), p. 242. doi: 10.1016/j.msea.2017.09.015
    [19]
    G.P. Chaudhari and V.L. Acoff, Titanium aluminide sheets made using roll bonding and reaction annealing, Intermetallics, 18(2010), No. 4, p. 472. doi: 10.1016/j.intermet.2009.09.008
    [20]
    Y.Y. Chen, Y. Jia, S.L. Xiao, J. Tian, and L.J. Xu, Review of the investment casting of TiAl-based intermetallic alloys, Acta Metall. Sin., 49(2013), No. 11, p. 1281. doi: 10.3724/SP.J.1037.2013.00536
    [21]
    D.X. Wei, Y. Koizumi, M. Nagasako, and A. Chiba, Refinement of lamellar structures in Ti–Al alloy, Acta. Mater., 152(2017), p. 81.
    [22]
    M. Konieczny, Relations between microstructure and mechanical properties in laminated Ti-intermetallic composites synthesized using Ti and Al foils, Key Eng. Mater., 592-593(2014), p. 728.
    [23]
    T.E.J. Edwards, F.D. Gioacchino, G. Mohanty, J. Wehrs, J. Michler, and W.J. Clegg, Longitudinal twinning in a TiAl alloy at high temperature by in situ micro-compression, Acta. Mater., 148(2018), p. 202. doi: 10.1016/j.actamat.2018.01.007
    [24]
    B.B. Yu, H. Yan, Q.J. Wu, Z. Hu, and F.H. Chen, Microstructure and corrosion behavior of Al3Ti /ADC12 composite modified with Sr, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 840. doi: 10.1007/s12613-018-1633-4
    [25]
    Y.Q. Han, C.F. Lin, X.X. Han, Y.P. Chang, C.H. Guo, and F.C. Jiang, Fabrication, interfacial characterization and mechanical properties of continuous Al2O3 ceramic fiber reinforced Ti/Al3Ti metal–intermetallic laminated (CCFR-MIL) composite, Mater. Sci. Eng. A, 688(2017), p. 338. doi: 10.1016/j.msea.2017.02.024
    [26]
    M.J. Wang, H. Huang, H. Li, S.M. Zhang, M. Wen, C. Song, and F. Pan, Microstructure and interfacial strength of SiC fiber-reinforced Ti17 alloy composites with different consolidation temperatures, Rare Met., 37(2018), No. 9, p. 759. doi: 10.1007/s12598-018-1002-5
    [27]
    H. Kakisawa and T. Sumitomo, The toughening mechanism of nacre and structural materials inspired by nacre, Sci. Technol. Adv. Mater., 12(2012), No. 6, art. No. 064710.
    [28]
    B. Gludovatz, F. Walsh, E.A. Zimmermann, S.E. Naleway, R.O. Ritchie, and J.J. Kruzic, Multiscale structure and damage tolerance of coconut shells, J. Mech. Behav. Biomed. Mater., 76(2017), p. 76. doi: 10.1016/j.jmbbm.2017.05.024
    [29]
    M.A. Meyers, J. McKittrick, and P.Y. Chen, Structural biological materials: Critical mechanics-materials connections, Science, 339(2013), No. 6121, p. 773. doi: 10.1126/science.1220854
    [30]
    M. ONeill, D. Cafiso, R. Mala, G.L. Rosa, and D. Taylor, Fracture toughness and damage development in limpet shells, Theor. Appl. Fract. Mech., 96(2018), p. 168. doi: 10.1016/j.tafmec.2018.04.013
    [31]
    K.S. Vecchio and F.C. Jiang, Fracture toughness of ceramic–fiber-reinforced metallic–intermetallic-laminate (CFR-MIL) composites, Mater. Sci. Eng. A, 649(2016), p. 407. doi: 10.1016/j.msea.2015.10.018
    [32]
    L. Zhang, B.L. Wu, and Y.L. Liu, Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core–shell-structured Ti/Al3Ti, Int. J. Miner. Metall. Mater., 24(2017), No. 12, p. 1431. doi: 10.1007/s12613-017-1536-9
    [33]
    L.M. Peng, H. Li, and J.H. Wang, Processing and mechanical behavior of laminated titanium–titanium tri-aluminide (Ti–Al3Ti) composites, Mater. Sci. Eng. A, 406(2005), No. 1-2, p. 309. doi: 10.1016/j.msea.2005.06.067
    [34]
    P.J. Zhou, C.H. Guo, E.H. Wang, Z.M. Wang, C. Ye, and F.C. Jiang, Interface tensile and fracture behavior of the Ti/Al3Ti Metal–Intermetallic Laminate (MIL) composite under quasi-static and high strain rates, Mater. Sci. Eng. A, 665(2016), p. 66. doi: 10.1016/j.msea.2016.04.020
    [35]
    R.D. Price, F. Jiang, R.M. Kulin, and K.S. Vecchio, Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal–intermetallic laminate (MIL) composites, Mater. Sci. Eng. A, 528(2011), No. 7-8, p. 3134. doi: 10.1016/j.msea.2010.12.087
    [36]
    D. Damjanović, D. Kozak, Y. Matvienko, and N. Gubeljak, Correlation of Pipe Ring Notched Bend (PRNB) specimen and Single Edge Notch Bend (SENB) specimen in determination of fracture toughness of pipe material, Fatigue Fract. Eng. Mater. Struct., 40(2017), No. 8, p. 1251. doi: 10.1111/ffe.12581
    [37]
    F. Sacchetti, W.J.B. Grouve, L.L. Warnet, and I.F. Villegas, Interlaminar fracture toughness of 5HS Carbon/PEEK laminates. A comparison between DCB, ELS and mandrel peel tests, Polym. Test., 66(2018), p. 13. doi: 10.1016/j.polymertesting.2017.12.005
    [38]
    J.A. Wang and T. Tan, A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test, Arch. Appl. Mech., 89(2019), No. 5, p. 813. doi: 10.1007/s00419-018-1398-2
    [39]
    P. Chantikul, G.R. Anstis, B.R. Lawn, and D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J. Am. Ceram. Soc., 64(1981), No. 9, p. 539. doi: 10.1111/j.1151-2916.1981.tb10321.x
    [40]
    L. Sun, D.J. Ma, L.Z. Wang, X.Z. Shi, J.L. Wang, and W. Chen, Determining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique, Eng. Fract. Mech., 197(2018), p. 151. doi: 10.1016/j.engfracmech.2018.05.001
    [41]
    D. Chicot, A. Pertuz, F. Roudet, M.H. Staia, and J. Lesage, New developments for fracture toughness determination by Vickers indentation, Mater. Sci. Technol., 20(2004), No. 7, p. 877. doi: 10.1179/026708304225017427
    [42]
    D.B. Marshall and B.R. Lawn, Indentation of brittle materials, [in] P. Blau and B. Lawn, eds., Microindentation Techniques in Materials Science and Engineering, ASTM International, West Conshohocken, 1985, p. 26-46.
    [43]
    A.G. Evans and E.A. Charles, Fracture toughness determination by indentation, J. Am. Ceram. Soc., 59(1976), No. 7-8, p. 371. doi: 10.1111/j.1151-2916.1976.tb10991.x
    [44]
    K.N. Niihara, R Morena, and D.P.H. Hasselman, Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1(1982), No. 1, p. 13. doi: 10.1007/BF00724706
    [45]
    J.J. Kruzic and R.O. Ritchie, Determining the toughness of ceramics from Vickers indentations using the crack-opening displacements: An experimental study, J. Am. Ceram. Soc., 86(2003), No. 8, p. 1433. doi: 10.1111/j.1151-2916.2003.tb03490.x
    [46]
    Y.H. Feng, T.H. Zhang, and R. Yang, A work approach to determine Vickers indentation fracture toughness, J. Am. Ceram. Soc., 94(2011), No. 2, p. 332. doi: 10.1111/j.1551-2916.2010.04289.x
    [47]
    J.H. Gong, Determining indentation toughness by incorporating true hardness into fracture mechanics equations, J. Eur. Ceram. Soc., 19(1999), No. 8, p. 1585. doi: 10.1016/S0955-2219(98)00256-8
    [48]
    D.J. Ma, L. Sun, T.T. Gao, J.L. Wang, and L.Z. Wang, New method for extracting fracture toughness of ceramic materials by instrumented indentation test with Berkovich indenter, J. Eur. Ceram. Soc., 37(2017), No. 6, p. 2537. doi: 10.1016/j.jeurceramsoc.2017.02.007
    [49]
    D.J. Harach and K.S. Vecchio, Microstructure evolution in metal–intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A, 32(2001), No. 6, p. 1493. doi: 10.1007/s11661-001-0237-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1389) PDF Downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return