Quan-qing Zeng, Song-sheng Zeng,  and Dong-yao Wang, Stress-corrosion behavior and characteristics of the friction stir welding of an AA2198-T34 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 774-782. https://doi.org/10.1007/s12613-019-1924-4
Cite this article as:
Quan-qing Zeng, Song-sheng Zeng,  and Dong-yao Wang, Stress-corrosion behavior and characteristics of the friction stir welding of an AA2198-T34 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 774-782. https://doi.org/10.1007/s12613-019-1924-4
Research Article

Stress-corrosion behavior and characteristics of the friction stir welding of an AA2198-T34 alloy

+ Author Affiliations
  • Corresponding author:

    Song-sheng Zeng    E-mail: zsscsu@sina.com

  • Received: 23 June 2019Revised: 30 September 2019Accepted: 16 October 2019Available online: 6 November 2019
  • To better understand the stress-corrosion behavior of friction stir welding (FSW), the effects of the microstructure on the stress-corrosion behavior of the FSW in a 2198-T34 aluminum alloy were investigated. The experimental results show that the low-angle grain boundary (LABs) of the stir zone (SZ) of FSW is significantly less than that of heated affected zone (HAZ), thermo-mechanically affected zone (TMAZ), and parent materials (PM), but the grain boundary precipitates (GBPs) T1 (Al2CuLi) were less, which has a slight effect on the stress corrosion. The dislocation density in SZ was greater than that in other regions. The residual stress in SZ was +67 MPa, which is greater than that in the TMAZ. The residual stress in the HAZ and PM is −8 MPa and −32 MPa, respectively, and both compressive stresses. The corrosion potential in SZ is obviously less than that in other regions. However, micro-cracks were formed in the SZ at low strain rate, which indicates that the grain boundary characters and GBPs have no significant effect on the crack initiation in the stress-corrosion process of the AA2198-T34. Nevertheless, the residual tensile stress has significant effect on the crack initiation during the stress-corrosion process.

  • loading
  • [1]
    P. Cavaliere, M. Cabibbo, F. Panella, and A. Squillace, 2198 Al–Li plates joined by Friction Stir Welding: Mechanical and microstructural behavior, Mater. Des., 30(2009), No. 9, p. 3622. doi: 10.1016/j.matdes.2009.02.021
    [2]
    M. Guérin, J. Alexis, E. Andrieu, C. Blanc, and G. Odemer, Corrosion-fatigue lifetime of Aluminium–Copper–Lithium alloy 2050 in chloride solution, Mater. Des., 87(2015), p. 681. doi: 10.1016/j.matdes.2015.08.003
    [3]
    J. Bolivar, M. Frégonèse, J. Réthoré, C. Duret-Thual, and P. Combrade, Evaluation of multiple stress corrosion crack interactions by in-situ Digital Image Correlation, Corros. Sci., 128(2017), p. 120. doi: 10.1016/j.corsci.2017.09.001
    [4]
    L.K. Zhu, Y. Yan, J.X. Li, L.J. Qiao, Z.C. Li, and A.A. Volinsky, Stress corrosion cracking at low loads: Surface slip and crystallographic analysis, Corros. Sci., 100(2015), p. 619. doi: 10.1016/j.corsci.2015.08.040
    [5]
    O. Lavigne, E. Gamboa, V. Luzin, M. Law, M. Giuliani, and W. Costin, The effect of the crystallographic texture on intergranular stress corrosion crack paths, Mater. Sci. Eng. A, 618(2014), p. 305. doi: 10.1016/j.msea.2014.09.038
    [6]
    J. Goebel, T. Ghidini, and A.J. Graham, Stress-corrosion cracking characterisation of the advanced aerospace Al–Li 2099-T86 alloy, Mater. Sci. Eng. A, 673(2016), p. 16. doi: 10.1016/j.msea.2016.07.013
    [7]
    S.Y. Chen, J.Y. Li, G.Y. Hu, K.H. Chen, and L.P. Huang, Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al–Zn–Mg alloy, J. Alloys Compd., 757(2018), p. 259. doi: 10.1016/j.jallcom.2018.05.063
    [8]
    C.Y. Meng, D. Zhang, L.Z. Zhuang, and J.S. Zhang, Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al–Mg–Zn alloys, J. Alloys Compd., 655(2016), p. 178. doi: 10.1016/j.jallcom.2015.09.159
    [9]
    U. Donatus, R.O. Ferreira, N.V.V. Mogili, B.V.G.D. Viveiros, M.X. Milagre, and I. Costa, Corrosion and anodizing behaviour of friction stir weldment of AA2198-T851 Al–Cu–Li alloy, Mater. Chem. Phys., 219(2018), p. 493. doi: 10.1016/j.matchemphys.2018.08.053
    [10]
    M.X. Milagre, U. Donatus, N.V. Mogli, R.M.P. Sliva, B.V.G. de Viveiros, V.F. Pereira, R.A. Antunes, C.S.C. Machado, J.V.S. Araujo, and I. Costa, Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding, J. Mater. Sci. Technol., 45(2020), p. 162. doi: 10.1016/j.jmst.2019.11.016
    [11]
    U. Donatus, B.V.G.D. Viveiros, M.C.D. Alencar, R.O. Ferreira, M.X. Milagre, and I. Costa, Correlation between corrosion resistance, anodic hydrogen evolution and microhardness in friction stir weldment of AA2198 alloy, Mater. Charact., 144(2018), p. 99. doi: 10.1016/j.matchar.2018.07.004
    [12]
    W.F. Xu, J.H. Liu, and H.Q. Zhu, Analysis of residual stresses in thick aluminum friction stir welded butt joints, Mater. Des., 32(2011), No. 4, p. 2000. doi: 10.1016/j.matdes.2010.11.062
    [13]
    J.L. Huang, J.F. Li, D.Y. Liu, R.F. Zhang, Y.L. Chen, X.H. Zhang, P.C. Ma, R.K. Gupta, and N. Birbilis, Correlation of intergranular corrosion behaviour with microstructure in Al–Cu–Li alloy, Corros. Sci., 139(2018), p. 215. doi: 10.1016/j.corsci.2018.05.011
    [14]
    M. Dhondt, I. Aubert, N. Saintier, and J.M. Olive, Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget, Corros. Sci., 86(2014), p. 123. doi: 10.1016/j.corsci.2014.05.001
    [15]
    A. Medjahed, A. Henniche, M. Derradji, T.F. Yu, Y. Wang, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, and M.L. Zhang, Effects of Cu/Mg ratio on the microstructure, mechanical and corrosion properties of Al–Li–Cu–Mg–X alloys, Mater. Sci. Eng. A, 718(2018), p. 241. doi: 10.1016/j.msea.2018.01.118
    [16]
    C. Luo, S.P. Albu, X.R. Zhou, Z.H. Sun, X.Y. Zhang, Z.H. Tang, and G.E. Thompson, Continuous and discontinuous localized corrosion of a 2xxx aluminium–copper–lithium alloy in sodium chloride solution, J. Alloys Compd., 658(2016), p. 61. doi: 10.1016/j.jallcom.2015.10.185
    [17]
    H.L. Qin, H. Zhang, and H.Q. Wu, The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy, Mater. Sci. Eng. A, 626(2015), p. 322. doi: 10.1016/j.msea.2014.12.026
    [18]
    M.X. Milagre, N.V. Mogili, U. Donatus, R.A.R. Giorjão, M. Terada, J.V.S. Araujo, C.S.C. Machado, and I. Costa, On the microstructure characterization of the AA2098-T351 alloy welded by FSW, Mater. Charact., 140(2018), p. 233. doi: 10.1016/j.matchar.2018.04.015
    [19]
    H. Robe, Y. Zedan, J.Q. Chen, H. Monajati, E. Feulvarch, and P. Bocher, Microstructural and mechanical characterization of a dissimilar friction stir welded butt joint made of AA2024-T3 and AA2198-T3, Mater. Charact., 110(2015), p. 242. doi: 10.1016/j.matchar.2015.10.029
    [20]
    M. Guérin, E. Andrieu, G. Odemer, J. Alexis, and C. Blanc, Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al–Cu–Li alloy, Corros. Sci., 85(2014), p. 455. doi: 10.1016/j.corsci.2014.04.042
    [21]
    S. Chen and X. Jiang, Texture evolution and deformation mechanism in friction stir welding of 2219Al, Mater. Sci. Eng. A, 612(2014), p. 267. doi: 10.1016/j.msea.2014.06.014
    [22]
    J.H. Liu, K. Zhao, M. Yu, and S.M. Li, Effect of surface abrasion on pitting corrosion of Al–Li alloy, Corros. Sci., 138(2018), p. 75. doi: 10.1016/j.corsci.2018.04.010
    [23]
    Y. Ma, X. Zhou, W. Huang, G.E. Thompson, X. Zhang, C. Luo, and Z. Sun, Localized corrosion in AA2099-T83 aluminum–lithium alloy: The role of intermetallic particles, Mater. Chem. Phys., 161(2015), p. 201. doi: 10.1016/j.matchemphys.2015.05.037
    [24]
    J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, M.Z. Ge, Y.L. Lu, and X.L. Li, Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints, Mater. Sci. Eng. A, 647(2015), p. 7. doi: 10.1016/j.msea.2015.08.084
    [25]
    X.X. Zhang, X.R. Zhou, T. Hashimoto, B. Liu, C. Luo, Z.H. Sun, Z.H. Tang, F. Lu, and Y.L. Ma, Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: The influence of non-uniform precipitation, Corros. Sci., 132(2018), p. 1. doi: 10.1016/j.corsci.2017.12.010
    [26]
    V. Proton, J. Alexis, E. Andrieu, J. Delfosse, M.C. Lafont, and C. Blanc, Characterisation and understanding of the corrosion behaviour of the nugget in a 2050 aluminium alloy Friction Stir Welding joint, Corros. Sci., 73(2013), p. 130. doi: 10.1016/j.corsci.2013.04.001
    [27]
    M. Bononi, M. Conte, R. Giovanardi, and A. Bozza, Hard anodizing of AA2099-T8 aluminum–lithium–copper alloy: Influence of electric cycle, electrolytic bath composition and temperature, Surf. Coat. Technol., 325(2017), p. 627. doi: 10.1016/j.surfcoat.2017.07.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1532) PDF Downloads(54) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return