Mohammad Sefidmooy Azar, Shahram Raygan, and Saeed Sheibani, Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 526-537. https://doi.org/10.1007/s12613-019-1931-5
Cite this article as:
Mohammad Sefidmooy Azar, Shahram Raygan, and Saeed Sheibani, Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 526-537. https://doi.org/10.1007/s12613-019-1931-5
Research Article

Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder

+ Author Affiliations
  • Corresponding author:

    Shahram Raygan    E-mail: shraygan@ut.ac.ir

  • Received: 30 May 2019Revised: 4 October 2019Accepted: 16 October 2019Available online: 6 November 2019
  • Nanostructured ZnFe2O4 was synthesized by the heat treatment of a mechanically activated mixture of ZnO/α-Fe2O3. X-ray diffraction (XRD) and differential thermal analysis (DTA) results demonstrated that, after 5 h of the mechanical activation of the mixture, ZnFe2O4 was formed by heat treatment at 750°C for 2 h. To improve the characteristics of ZnFe2O4 for adsorption applications, the chemical activation process was performed. The 2 h chemical activation with 1 mol·L−1 HNO3 and co-precipitation of 52%−57% dissolved ZnFe2O4 led to an increase in the saturated magnetization from 2.0 to 7.5 emu·g−1 and in the specific surface area from 5 to 198 m2·g−1. In addition, the observed particle size reduction of chemically activated ZnFe2O4 in field emission scanning electron microscopy (FESEM) micrographs was in agreement with the specific surface area increase. These improvements in ZnFe2O4 characteristics considerably affected the adsorption performance of this adsorbent. Adsorption results revealed that mechano-thermally synthesized ZnFe2O4 had the maximum arsenic adsorption of 38% with the adsorption capacity of 0.995 mg·g−1 in a 130 mg·L−1 solution of As(V) after 30 min of agitation. However, chemically activated ZnFe2O4 showed the maximum arsenic adsorption of approximately 99% with the adsorption capacity of 21.460 mg·g−1 under the same conditions. These results showed that the weak adsorption performance of mechano-thermally synthesized ZnFe2O4 was improved by the chemical activation process.
  • loading
  • [1]
    Z.K. Karakaş, R. Boncukcuoğlu, and İ.H. Karakaş, Adsorptive properties of As(III) from aqueous solution using magnetic nickel ferrite (NiFe2O4) nanoparticles: Isotherm and kinetic studies, Sep. Sci. Technol., 52(2017), No. 1, p. 21. doi: 10.1080/01496395.2016.1240693
    [2]
    K.S.M. Abdul, S.S. Jayasinghe, E.P.S. Chandana, C. Jayasumana, and P.M.C.S. De Silva, Arsenic and human health effects: A review, Environ. Toxicol. Pharmacol., 40(2015), No. 3, p. 828. doi: 10.1016/j.etap.2015.09.016
    [3]
    A.E. Burakov, E.V Galunin, I.V Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, and V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf., 148(2018), p. 702. doi: 10.1016/j.ecoenv.2017.11.034
    [4]
    J. Gómez-Pastora, E. Bringas, and I. Ortiz, Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications, Chem. Eng. J., 256(2014), p. 187. doi: 10.1016/j.cej.2014.06.119
    [5]
    Y.J. Tu, T.S. Chan, H.W. Tu, S.L. Wang, C.F. You, and C.K. Chang, Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles, Chemosphere, 148(2016), p. 452. doi: 10.1016/j.chemosphere.2016.01.054
    [6]
    J.G. Parsons, M.L. Lopez, J.R. Peralta-Videa, and J.L. Gardea-Torresdey, Determination of arsenic(III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents, Microchem. J., 91(2009), No. 1, p. 100. doi: 10.1016/j.microc.2008.08.012
    [7]
    S. Martinez-Vargas, A.I. Martínez, E.E. Hernández-Beteta, O.F. Mijangos-Ricardez, V. Vázquez-Hipólito, C. Patiño-Carachure, and J. López-Luna, As(III) and As(V) adsorption on manganese ferrite nanoparticles, J. Mol. Struct., 1154(2018), p. 524. doi: 10.1016/j.molstruc.2017.10.076
    [8]
    S. Martinez-Vargas, A.I. Martínez, E.E. Hernández-Beteta, O.F. Mijangos-Ricardez, V. Vázquez-Hipólito, C. Patiño-Carachure, H. Hernandez-Flores, and J. López-Luna, Arsenic adsorption on cobalt and manganese ferrite nanoparticles, J. Mater. Sci., 52(2017), p. 6205. doi: 10.1007/s10853-017-0852-9
    [9]
    P. Druska, U. Steinike, and V. Šepelák, Surface structure of mechanically activated and of mechanosynthesized zinc ferrite, J. Solid State Chem., 146(1999), No. 1, p. 13. doi: 10.1006/jssc.1998.8284
    [10]
    J. Hu, I.M.C. Lo, and G.H. Chen, Comparative study of various magnetic nanoparticles for Cr(VI) removal, Sep. Purif. Technol., 56(2007), No. 3, p. 249. doi: 10.1016/j.seppur.2007.02.009
    [11]
    J.N. Dui, G.Y. Zhu, and S.M. Zhou, Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI), ACS Appl. Mater. Interfaces, 5(2013), No. 20, p. 10081. doi: 10.1021/am402656t
    [12]
    M.P. Reddy, A.M.A. Mohamed, X.B. Zhou, S. Du, and Q. Huang, A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe2O4 nanospheres, J. Magn. Magn. Mater., 388(2015), p. 40. doi: 10.1016/j.jmmm.2015.04.009
    [13]
    C.G. Anchieta, E.C. Severo, C. Rigo, M.A. Mazutti, R.C. Kuhn, E.I. Muller, E.M.M. Flores, R.F.P.M. Moreira, and E.L. Foletto, Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction, Mater. Chem. Phys., 160(2015), p. 141. doi: 10.1016/j.matchemphys.2015.04.016
    [14]
    M. Hosseinzadeh, S.A.S. Ebrahimi, S. Raygan, and S.M. Masoudpanah, Removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite through mechanochemical activation, J. Ultrafine Grained Nanostruct. Mater., 49(2016), No. 2, p. 72.
    [15]
    S. Rajput, C.U. Pittman Jr, and D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci., 468(2016), p. 334. doi: 10.1016/j.jcis.2015.12.008
    [16]
    Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, and L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Sep. Purif. Technol., 68(2009), No. 3, p. 312. doi: 10.1016/j.seppur.2009.05.020
    [17]
    L. Santona, P. Castaldi, and P. Melis, Evaluation of the interaction mechanisms between red muds and heavy metals, J. Hazard. Mater., 136(2006), No. 2, p. 324. doi: 10.1016/j.jhazmat.2005.12.022
    [18]
    M.K. Sahu, S. Mandal, S.S. Dash, P. Badhai, and R.K. Patel, Removal of Pb(II) from aqueous solution by acid activated red mud, J. Environ. Chem. Eng., 1(2013), No. 4, p. 1315. doi: 10.1016/j.jece.2013.09.027
    [19]
    S. Sushil and V.S. Batra, Catalytic applications of red mud, an aluminium industry waste: A review, Appl. Catal. B, 81(2008), No. 1-2, p. 64. doi: 10.1016/j.apcatb.2007.12.002
    [20]
    J.C. Hunter, Preparation of a new crystal form of manganese dioxide: λ-MnO2, J. Solid State Chem., 39(1981), No. 2, p. 142. doi: 10.1016/0022-4596(81)90323-6
    [21]
    Y.J. Tu, C.F. You, C.K. Chang, and S.L. Wang, XANES evidence of arsenate removal from water with magnetic ferrite, J. Environ. Manage., 120(2013), p. 114. doi: 10.1016/j.jenvman.2013.02.006
    [22]
    Y.J. Tu, C.F. You, C.K. Chang, S.L. Wang, and T.S. Chan, Arsenate adsorption from water using a novel fabricated copper ferrite, Chem. Eng. J., 198-199(2012), p. 440. doi: 10.1016/j.cej.2012.06.006
    [23]
    G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22. doi: 10.1016/0001-6160(53)90006-6
    [24]
    A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H.M. Kamari, and N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process, Ceram. Int., 40(2014), No. 4, p. 5881. doi: 10.1016/j.ceramint.2013.11.032
    [25]
    G.F. Goya and H.R. Rechenberg, Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles, J. Magn. Magn. Mater., 196-197(1999), p. 191. doi: 10.1016/S0304-8853(98)00723-9
    [26]
    S. Bid and S.K. Pradhan, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis, Mater. Chem. Phys., 82(2003), No. 1, p. 27. doi: 10.1016/S0254-0584(03)00169-X
    [27]
    S. Kleiner, F. Bertocco, F.A. Khalid, and O. Beffort, Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al–TiO2 system, Mater. Chem. Phys., 89(2005), No. 2-3, p. 362. doi: 10.1016/j.matchemphys.2004.09.014
    [28]
    S.H. Zhang, R.X. Shi, and Y. Tan, Comparison of the solubility of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water, J. Solution Chem., 47(2018), p. 1112. doi: 10.1007/s10953-018-0779-z
    [29]
    R.A. Shawabkeh, Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust, Hydrometallurgy, 104(2010), No. 1, p. 61. doi: 10.1016/j.hydromet.2010.04.014
    [30]
    J. Hu, I.M.C. Lo, and G.H. Chen, Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles, Langmuir, 21(2005), No. 24, p. 11173. doi: 10.1021/la051076h
    [31]
    S.S. Mandaokar, D.M. Dharmadhikari, and S.S. Dara, Retrieval of heavy metal ions from solution via ferritisation, Environ. Pollut., 83(1994), No. 3, p. 277. doi: 10.1016/0269-7491(94)90148-1
    [32]
    G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, and K. Lal, Synthesis and characterization of Ni–Zn ferrite nanoparticles, J. Magn. Magn. Mater., 322(2010), No. 8, p. 1015. doi: 10.1016/j.jmmm.2009.12.006
    [33]
    D.W. Green and R.H. Perry, Perry's Chemical Engineers' Handbook, 8th Ed., McGraw-Hill, New York, 2007.
    [34]
    Q.L. Li, Y.F. Wang, and C.B. Chang, Study of Cu, Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method, J. Alloys Compd., 505(2010), No. 2, p. 523. doi: 10.1016/j.jallcom.2010.06.132
    [35]
    A. Gajović, S. Šturm, B. Jančar, A. Šantić, K. Žagar, and M. Čeh, The synthesis of pure‐phase bismuth ferrite in the Bi–Fe–O system under hydrothermal conditions without a mineralizer, J. Am. Ceram. Soc., 93(2010), No. 10, p. 3173. doi: 10.1111/j.1551-2916.2010.03882.x
    [36]
    M. Hua, S.J. Zhang, B.C. Pan, W.M. Zhang, L. Lv, and Q.X. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: A review, J. Hazard. Mater., 211-212(2012), p. 317. doi: 10.1016/j.jhazmat.2011.10.016
    [37]
    D. Mohan and C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazard. Mater., 142(2007), No. 1-2, p. 1. doi: 10.1016/j.jhazmat.2007.01.006
    [38]
    D. Choi, G.E. Blomgren, and P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater., 18(2006), No. 9, p. 1178. doi: 10.1002/adma.200502471
    [39]
    S. Mustafa, M.I. Zaman, R. Gul, and S. Khan, Effect of Ni2+ loading on the mechanism of phosphate anion sorption by iron hydroxide, Sep. Purif. Technol., 59(2008), No. 1, p. 108. doi: 10.1016/j.seppur.2007.05.033
    [40]
    R. Kefirov, E. Ivanova, K. Hadjiivanov, S. Dzwigaj, and M. Che, FTIR characterization of Fe3+–OH groups in Fe–H–BEA zeolite: Interaction with CO and NO, Catal. Lett., 125(2008), p. 209. doi: 10.1007/s10562-008-9577-3
    [41]
    G. Mariani, M. Fabbri, F. Negrini, and P.L. Ribani, High-gradient magnetic separation of pollutant from wastewaters using permanent magnets, Sep. Purif. Technol., 72(2010), No. 2, p. 147. doi: 10.1016/j.seppur.2010.01.017
    [42]
    S.D. Shenoy, P.A. Joy, and M.R. Anantharaman, Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite, J. Magn. Magn. Mater., 269(2004), No. 2, p. 217. doi: 10.1016/S0304-8853(03)00596-1
    [43]
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault, and J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite, J. Phys. Condens. Matter, 12(2000), No. 35, p. 7795. doi: 10.1088/0953-8984/12/35/314
    [44]
    M.H. Cao, T.F. Liu, S. Gao, G.B. Sun, X.L. Wu, C.W. Hu, and Z.L. Wang, Single-crystal dendritic micro-pines of magnetic α-Fe2O3: Large-scale synthesis, formation mechanism, and properties, Angew. Chem. Int. Ed., 44(2005), No. 27, p. 4197. doi: 10.1002/anie.200500448
    [45]
    M. Ahmadzadeh, A. Ataie, and E. Mostafavi, The effects of mechanical activation energy on the solid-state synthesis process of BiFeO3, J. Alloys Compd., 622(2015), p. 548. doi: 10.1016/j.jallcom.2014.10.135
    [46]
    E. Murad, Magnetic properties of microcrystalline iron(III) oxides and related materials as reflected in their Mössbauer spectra, Phys. Chem. Miner., 23(1996), p. 248.
    [47]
    M. Atif, S.K. Hasanain, and M. Nadeem, Magnetization of sol–gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size, Solid State Commun., 138(2006), No. 8, p. 416. doi: 10.1016/j.ssc.2006.03.023
    [48]
    G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa, Sorption isotherms: A review on physical bases, modeling and measurement, Appl. Geochem., 22(2007), No. 2, p. 249. doi: 10.1016/j.apgeochem.2006.09.010
    [49]
    K. Verburg and P. Baveye, Hysteresis in the binary exchange of cations on 2:1 clay minerals: A critical review, Clays Clay Miner., 42(1994), p. 207. doi: 10.1346/CCMN.1994.0420211
    [50]
    S.X. Zhang, H.Y. Niu, Y.Q. Cai, X.L. Zhao, and Y.L. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4, Chem. Eng. J., 158(2010), No. 3, p. 599. doi: 10.1016/j.cej.2010.02.013
    [51]
    M. Benavente, L. Moreno, and J. Martinez, Sorption of heavy metals from gold mining wastewater using chitosan, J. Taiwan Inst. Chem. Eng., 42(2011), No. 6, p. 976. doi: 10.1016/j.jtice.2011.05.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Share Article

    Article Metrics

    Article Views(1188) PDF Downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return