Zhen-jia Xie, Cheng-jia Shang, Xue-lin Wang, Xue-min Wang, Gang Han,  and Raja-devesh-kumar Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 1-9. https://doi.org/10.1007/s12613-019-1939-x
Cite this article as:
Zhen-jia Xie, Cheng-jia Shang, Xue-lin Wang, Xue-min Wang, Gang Han,  and Raja-devesh-kumar Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 1-9. https://doi.org/10.1007/s12613-019-1939-x
Invited Review

Recent progress in third-generation low alloy steels developed under M3 microstructure control

+ Author Affiliations
  • Corresponding author:

    Cheng-jia Shang    E-mail: cjshang@ustb.edu.cn

  • Received: 5 July 2019Revised: 31 October 2019Accepted: 1 November 2019Available online: 16 December 2019
  • During the past thirty years, two generations of low alloy steels (ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy steels is expected to achieve high strength and improved ductility and toughness, while satisfying the new demands for weight reduction, greenness, and safety. This paper reviews recent progress in the development of third-generation low alloy steels with an M3 microstructure, namely, microstructures with multi-phase, meta-stable austenite, and multi-scale precipitates. The review summarizes the alloy designs and processing routes of microstructure control, and the mechanical properties of the alloys. The stabilization of retained austenite in low alloy steels is especially emphasized. Multi-scale nano-precipitates, including carbides of microalloying elements and Cu-rich precipitates obtained in third-generation low alloy steels, are then introduced. The structure–property relationships of third-generation alloys are also discussed. Finally, the promises and challenges to future applications are explored.

  • loading
  • [1]
    H.L. Fan, A.M. Zhao, Q.C. Li, H. Guo, and J.G. He, Effects of ausforming strain on bainite transformation in nanostructured bainite steel, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 264. doi: 10.1007/s12613-017-1404-7
    [2]
    B. Avishan, Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1010. doi: 10.1007/s12613-017-1490-6
    [3]
    S.G. Hashemi and B. Eghbali, Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 339. doi: 10.1007/s12613-018-1577-8
    [4]
    D.L. Li, G.Q. Fu, M.Y. Zhu, Q. Li, and C.X. Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 325. doi: 10.1007/s12613-018-1576-9
    [5]
    B. Shahriari, R. Vafaei, E.M. Sharifi, and K. Farmanesh, Aging behavior of a copper-bearing high-strength low-carbon steel, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 429. doi: 10.1007/s12613-018-1588-5
    [6]
    Y.Q. Weng, C.J. Shang, and C.F. Yan, State-of-the-art and development trends of HSLA steels in China, Iron Steel, 46(2011), No. 9, p. 1.
    [7]
    H. Dong, M.Q. Wang, and Y.Q. Weng, Performance improvement of steels through M3 structure control, Iron Steel, 45(2010), No. 7, p. 1.
    [8]
    Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo, and R.D.K. Misra, Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae, Mater. Sci. Eng. A, 583(2013), p. 1. doi: 10.1016/j.msea.2013.06.062
    [9]
    P.J. Jacques, Transformation-induced plasticity for high strength formable steels, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 3-4, p. 259. doi: 10.1016/j.cossms.2004.09.006
    [10]
    J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State. Mater. Sci., 8(2004), No. 3-4, p. 219. doi: 10.1016/j.cossms.2004.09.003
    [11]
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611. doi: 10.1016/S1359-6454(03)00059-4
    [12]
    R.L. Miller, Ultrafine-grained microstructures and mechanical properties of alloy steels, Metall. Mater. Trans. B, 3(1972), No. 4, p. 905. doi: 10.1007/BF02647665
    [13]
    H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, and H. Dong, Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel, Acta Mater., 59(2011), No. 10, p. 4002. doi: 10.1016/j.actamat.2011.03.025
    [14]
    R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, and L.P. Karjalainen, Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy, Acta Mater., 84(2015), p. 339. doi: 10.1016/j.actamat.2014.10.038
    [15]
    T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee, and C.S. Lee, Tensile deformation behavior of Fe–Mn–C TWIP steel with ultrafine elongated grain structure, Mater. Lett., 75(2012), p. 169. doi: 10.1016/j.matlet.2012.02.012
    [16]
    W.H. Zhou, X.L. Wang, P.K.C. Venkatsurya, H. Guo, C.J. Shang, and R.D.K. Misra, Structure–mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering, Mater. Sci. Eng. A, 607(2014), p. 569. doi: 10.1016/j.msea.2014.03.107
    [17]
    W.H. Zhou, H. Guo, Z.J. Xie, X.M. Wang, and C.J. Shang, High strength low-carbon alloyed steel with good ductility by combining the retained austenite and nano-sized precipitates, Mater. Sci. Eng. A, 587(2013), p. 365. doi: 10.1016/j.msea.2013.06.022
    [18]
    W.H. Zhou, H. Guo, Z.J. Xie, C.J. Shang, and R.D.K. Misra, Copper precipitation and its impact on mechanical properties in a low carbon microalloyed steel processed by a three-step heat treatment, Mater. Des., 63(2014), p. 42. doi: 10.1016/j.matdes.2014.05.059
    [19]
    Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, and C.J. Shang, Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel, Mater. Des., 59(2014), p. 193. doi: 10.1016/j.matdes.2014.02.035
    [20]
    Z.J. Xie, L. Xiong, G. Han, X.L. Wang, and C.J. Shang, Thermal stability of retained austenite and properties of a multi-phase low alloy steel, Metals, 8(2018), No. 10, p. 807. doi: 10.3390/met8100807
    [21]
    Z.J. Xie, G. Han, W.H. Zhou, C.Y. Zeng, and C.J. Shang, Study of retained austenite and nano-scale precipitation and their effects on properties of a low alloyed multi-phase steel by the two-step intercritical treatment, Mater. Charact., 113(2016), p. 60. doi: 10.1016/j.matchar.2016.01.009
    [22]
    G. Han, Z.J. Xie, L. Xiong, C.J. Shang, and R.D.K. Misra, Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment, Mater. Sci. Eng. A, 705(2017), p. 89. doi: 10.1016/j.msea.2017.08.061
    [23]
    G. Han, Z.J. Xie, B. Lei, W.Q. Liu, H.H. Zhu, Y. Yan, R.D.K. Misra, and C.J. Shang, Simultaneous enhancement of strength and plasticity by nano B2 clusters and nano-γ phase in a low carbon low alloy steel, Mater. Sci. Eng. A, 730(2018), p. 119. doi: 10.1016/j.msea.2018.05.080
    [24]
    W.J. Nie, X.M. Wang, S.J. Wu, H.L. Guan, and C.J. Shang, Stress-strain behavior of multi-phase high performance structural steel, Sci. China Technol. Sci., 55(2012), No. 7, p. 1791. doi: 10.1007/s11431-012-4879-5
    [25]
    J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, and W.Q. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite, Scripta Mater., 63(2010), No. 8, p. 815. doi: 10.1016/j.scriptamat.2010.06.023
    [26]
    Z.J. Xie, C.J. Shang, W.H. Zhou, and B.B. Wu, Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel, Acta Metall. Sin., 52(2016), No. 2, p. 224. doi: 10.11900/0412.1961.2015.00280
    [27]
    K.J. Kim and L.H. Schwartz, On the effects of intercritical tempering on the impact energy of Fe–9Ni–0.1C, Mater. Sci. Eng., 33(1978), No. 1, p. 5. doi: 10.1016/0025-5416(78)90149-0
    [28]
    C.A. Pampillo and H.W. Paxton, The effect of reverted austenite on the mechanical properties and toughness of 12 Ni and 18 Ni (200) maraging steels, Metall. Mater. Trans. B, 3(1972), No. 11, p. 2895. doi: 10.1007/BF02652858
    [29]
    S.D. Antolovich and B. Singh, On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels, Metall. Mater. Trans. B, 2(1971), No. 8, p. 2135. doi: 10.1007/BF02917542
    [30]
    W.H. Zhou, Z.J. Xie, H. Guo, and C.J. Shang, Regulation of multi-phase microstructure and mechanical properties in a 700 MPa grade low carbon lowalloy steel with good ductility, Acta Metall. Sin., 51(2015), No. 4, p. 407.
    [31]
    M. Mukherjee, S. Tiwari, and B. Bhattacharya, Evaluation of factors affecting the edge formability of two hot rolled multiphase steels, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 199. doi: 10.1007/s12613-018-1563-1
    [32]
    C.F. Kuang, Z.W. Zheng, M.L. Wang, Q. Xu, and S.G. Zhan, Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel, Int. J. Miner. Metall. Mater., 24(2017), No. 12, p. 1379. doi: 10.1007/s12613-017-1530-2
    [33]
    Z.J. Xie, Y.P. Fang, G. Han, H. Guo, R.D.K. Misra, and C.J. Shang, Structure–property relationship in a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering, Mater. Sci. Eng. A, 618(2014), p. 112. doi: 10.1016/j.msea.2014.08.072
    [34]
    S. Van Der Zwaag, L. Zhao, S.O. Kruijver, and J. Sietsma, Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels, ISIJ Int., 42(2002), No. 12, p. 1565. doi: 10.2355/isijinternational.42.1565
    [35]
    D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Quenching and partitioning martensite—A novel steel heat treatment, Mater. Sci. Eng. A, 438-440(2006), p. 25. doi: 10.1016/j.msea.2006.02.133
    [36]
    C.K. Syn, B. Fultz, and J.W. Morris, Mechanical stability of retained austenite in tempered 9Ni steel, Metall. Trans. A, 9(1978), No. 11, p. 1635. doi: 10.1007/BF02661946
    [37]
    B. Fultz, J.I. Kim, Y.H. Kim, and J.W. Morris, The chemical composition of precipitated austenite in 9Ni steel, Metall. Trans. A, 17(1986), No. 6, p. 967. doi: 10.1007/BF02661262
    [38]
    B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O. Fior, and J.W. Morris, The stability of precipitated austenite and the toughness of 9Ni steel, Metall. Trans. A, 16(1985), No. 12, p. 2237. doi: 10.1007/BF02670423
    [39]
    Y.H. Yang, Q.W. Cai, D. Tang, and H.B. Wu, Precipitation and stability of reversed austenite in 9Ni steel, Int. J. Miner. Metall. Mater., 17(2010), No. 5, p. 587. doi: 10.1007/s12613-010-0361-1
    [40]
    H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong, Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C–5Mn), Mater. Sci. Eng. A, 532(2012), p. 435. doi: 10.1016/j.msea.2011.11.009
    [41]
    Y.K. Lee and J. Han, Current opinion in medium manganese steel, Mater. Sci. Technol., 31(2015), No. 7, p. 843. doi: 10.1179/1743284714Y.0000000722
    [42]
    J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Misra, Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite, Mater. Charact., 136(2018), p. 20. doi: 10.1016/j.matchar.2017.11.058
    [43]
    Z.J. Xie, C.J. Shang, S.V. Subramanian, X.P. Ma, and R.D.K. Misra, Atom probe tomography and numerical study of austenite stabilization in a low carbon low alloy steel processed by two-step intercritical heat treatment, Scripta Mater., 137(2017), p. 36. doi: 10.1016/j.scriptamat.2017.05.002
    [44]
    S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, Effect of grain refinement on thermal stability of metastable austenitic steel, Mater. Trans., 45(2004), No. 7, p. 2245. doi: 10.2320/matertrans.45.2245
    [45]
    B.H. Jiang, L.M. Sun, R.C. Li, and T.Y. Hsu, Influence of austenite grain size on γ-ε martensitic transformation temperature in Fe–Mn–Si alloys, Scripta Metall. Mater., 33(1995), No. 1, p. 63. doi: 10.1016/0956-716X(95)00081-6
    [46]
    H.S. Yang and H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scripta Mater., 60(2009), No. 7, p. 493. doi: 10.1016/j.scriptamat.2008.11.043
    [47]
    E. Jimenez-Melero, N.H. Van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Martensitic transformation of individual grains in low-alloyed TRIP steels, Scripta Mater., 56(2007), No. 5, p. 421. doi: 10.1016/j.scriptamat.2006.10.041
    [48]
    S. Hashimoto, S. Ikeda, K.I. Sugimoto, and S. Miyake, Effects of Nb and Mo addition to 0.2%C–1.5%Si–1.5%Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets, ISIJ Int., 44(2004), No. 9, p. 1590. doi: 10.2355/isijinternational.44.1590
    [49]
    J. Heslop and N.J. Petch, The ductile-brittle transition in the fracture of α-iron: II, Philos. Mag., 3(1958), No. 34, p. 1128. doi: 10.1080/14786435808237043
    [50]
    N.J. Petch, The ductile-brittle transition in the fracture of α-iron: I, Philos. Mag., 3(1958), No. 34, p. 1089. doi: 10.1080/14786435808237038
    [51]
    S.D. Antolovich, A. Saxena, and G.R. Chanani, Increased fracture toughness in a 300 grade maraging steel as a result of thermal cycling, Metall. Trans., 5(1974), No. 3, p. 623. doi: 10.1007/BF02644658
    [52]
    X.L. Gui, K.K. Wang, G.H. Gao, R.D.K. Misra, Z.L. Tan, and B.Z. Bai, Rolling contact fatigue of bainitic rail steels: The significance of microstructure, Mater. Sci. Eng. A, 657(2016), p. 82. doi: 10.1016/j.msea.2016.01.052
    [53]
    G.H. Gao, B.X. Zhang, C. Cheng, P. Zhao, H. Zhang, and B.Z. Bai, Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process, Int. J. Fatigue, 92(2016), p. 203. doi: 10.1016/j.ijfatigue.2016.06.025
    [54]
    X.L. Wang, Y.R. Nan, Z.J. Xie, Y.T. Tsai, J.R. Yang, and C.J. Shang, Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel, Mater. Sci. Eng. A, 702(2017), p. 196. doi: 10.1016/j.msea.2017.06.081
    [55]
    X.L. Wang, L.M. Dong, W.W. Yang, Y. Zhang, X.M. Wang, and C.J. Shang, Effect of Mn. Ni, Mo proportion on microstructure and mechanical properties of weld metal of K65 pipeline steel, Acta Metall. Sin., 52(2016), No. 6, p. 649. doi: 10.11900/0412.1961.2015.00453
    [56]
    X.L. Wang, Y.T. Tsai, J.R. Yang, Z.Q. Wang, X.C. Li, C.J. Shang, and R.D.K. Misra, Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel, Weld. World, 61(2017), No. 6, p. 1155. doi: 10.1007/s40194-017-0498-x
    [57]
    X.L. Wang, C.J. Shang, and X.M. Wang, Characterization of the multi-pass weld metal and the effect of post-weld heat treatment on its microstructure and toughness, [in] HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, Hangzhou, 2015, p. 481.
    [58]
    X.L. Wang, X.M. Wang, C.J. Shang, and R.D.K. Misra, Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness, Mater. Sci. Eng. A, 649(2016), p. 282. doi: 10.1016/j.msea.2015.09.030
    [59]
    L.M. Dong, L. Yang, J. Dai, Y. Zhang, X.L. Wang, and C.J. Shang, Effect of Mn, Ni, Mo contents on microstructure transition and low temperature toughness of weld metal for K65 hot bending pipe, Acta. Metall. Sin., 53(2017), No. 6, p. 657. doi: 10.11900/0412.1961.2016.00403
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Share Article

    Article Metrics

    Article Views(7584) PDF Downloads(403) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return