Cite this article as: |
Shi Wang, Xue-peng Song, Xiao-jun Wang, Qiu-song Chen, Jian-chun Qin, and Yu-xian Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1065-1074. https://doi.org/10.1007/s12613-019-1948-9 |
Xiao-jun Wang E-mail: xiaojun7903@126.com
Qiu-song Chen E-mail: qiusong.chen@csu.edu.cn
[1] |
K.A.S. Meraz, S.M.P. Vargas, J.T.L. Maldonado, J.M.C. Bravo, M.T.O. Guzman, and E.A.L. Maldonado, Eco-friendly innovation for nejayote coagulation–flocculation process using chitosan: Evaluation through zeta potential measurements, Chem. Eng. J., 284(2016), p. 536. doi: 10.1016/j.cej.2015.09.026
|
[2] |
Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404. doi: 10.1007/s12613-019-1749-1
|
[3] |
M. Tanguay, P. Fawell, and S. Adkins, Modelling the impact of two different flocculants on the performance of a thickener feedwell, Appl. Math. Modell., 38(2014), No. 17-18, p. 4262. doi: 10.1016/j.apm.2014.04.047
|
[4] |
S. Wang, S. Li, J.C. Qin, G.Z. Xiao, G.C. Yang, and X. Feng, Effect of anionic polyacrylamide on the structural stability of thickened tailings slurry in pipeline transportation, Adv. Mater. Sci. Eng., 2018(2018), art. No. 7131487. doi: 10.1155/2018/7131487
|
[5] |
S. Li, X.M. Wang, and Q.L. Zhang, Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant, Trans. Nonferrous Met. Soc. China, 26(2016), No. 7, p. 1975. doi: 10.1016/S1003-6326(16)64308-X
|
[6] |
C. Sheng, C.L. Duan, Y.M. Zhao, C.Y. Zhou, and Y. Zhang, Simulation and experimental research on coarse coal slime particles’ separation in inclined tapered diameter separation bed, Can. J. Chem. Eng., 95(2017), No. 11, p. 2129. doi: 10.1002/cjce.22832
|
[7] |
L. Botha and J.B.P. Soares, The influence of tailings composition on flocculation, Can. J. Chem. Eng., 93(2015), No. 9, p. 1514. doi: 10.1002/cjce.22241
|
[8] |
H.Z. Jiao, H.J. Wang, A.X. Wu, X.W. Ji, Q.W. Yan, and X. Li, Rule and mechanism of flocculation sedimentation of unclassified tailings, J. Univ. Sci. Technol. Beijing, 32(2010), No. 6, p. 702.
|
[9] |
H.E. Ries and B.L. Meyers, Flocculation mechanism: Charge neutralization and bridging, Science, 160(1968), No. 3835, p. 1449. doi: 10.1126/science.160.3835.1449
|
[10] |
B.V. Balakin, G. Shamsutdinova, and P. Kosinski, Agglomeration of solid particles by liquid bridge flocculants: Pragmatic modelling, Chem. Eng. Sci., 122(2015), p. 173. doi: 10.1016/j.ces.2014.09.003
|
[11] |
C. Autier, N. Azema, J.M. Taulemesse, and L. Clerc, Mesostructure evolution of cement pastes with addition of superplasticizers highlighted by dispersion indices, Powder Technol., 249(2013), p. 282. doi: 10.1016/j.powtec.2013.08.036
|
[12] |
B.J. Lee, M.A. Schlautman, E. Toorman, and M. Fettweis, Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides, Water Res., 46(2012), No. 17, p. 5696. doi: 10.1016/j.watres.2012.07.056
|
[13] |
R. Bürger, J.J.R. Damasceno, and K.H. Karlsen, A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section, Int. J. Miner. Process., 73(2004), No. 2-4, p. 183. doi: 10.1016/S0301-7516(03)00073-5
|
[14] |
W.J. Zou, Y.J. Cao, C.B. Sun, and Z.J. Zhang, Particles interaction in selective flocculation flotation of fine coal, J. China Univ. Min. Technol., 44(2015), No. 6, p. 1061.
|
[15] |
F.A. Benn, P.D. Fawell, J. Halewood, P.J. Austin, A.D. Costine, W.G. Jones, N.S. Francis, D.C. Druett, and D. Lester, Sedimentation and consolidation of different density aggregates formed by polymer-bridging flocculation, Chem. Eng. Sci., 184(2018), p. 111. doi: 10.1016/j.ces.2018.03.037
|
[16] |
A.E. Kazzaz, Z.H. Feizi, F.G. Kong, and P. Fatehi, Interaction of poly(acrylic acid) and aluminum oxide particles in suspension: Particle size effect, Colloids Surf. A, 556(2018), p. 218. doi: 10.1016/j.colsurfa.2018.08.013
|
[17] |
M.R. Garmsiri and H.H.A. Shirazi, The effect of grain size on flocculant preparation, Miner. Eng., 65(2014), p. 51. doi: 10.1016/j.mineng.2014.05.011
|
[18] |
W.S. Ng, R. Sonsie, E. Forbes, and G.V. Franks, Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector, Miner. Eng., 77(2015), p. 64. doi: 10.1016/j.mineng.2015.02.013
|
[19] |
X.J. Fei, Hydraulics of Transporting Slurry and Granular Material, Tsinghua University Press, Beijing, 1994, p. 105.
|
[20] |
A.X. Wu, X.H. Liu, H.J. Wang, H.Z. Jiao, S.Y. Wang, S.Z. Liu, and Z.L. Xue, Microstructural evolution characteristics of an unclassified tailing paste in constant shearing, Chin. J. Eng., 37(2015), No. 2, p. 145.
|
[21] |
Y. Feng, J. Kero, Q.X. Yang, Q.S. Chen, F. Engström, C. Samuelsson, and C.C. Qi, Mechanical activation of granulated copper slag and its influence on hydration heat and compressive strength of blended cement, Materials, 12(2019), No. 5, p. 772. doi: 10.3390/ma12050772
|
[22] |
Y. He, Q.S. Chen, C.C. Qi, Q.L. Zhang, and C.C. Xiao, Lithium slag and fly ash-based binder for cemented fine tailings backfill, J. Environ. Manage., 248(2019), art. No. 109282. doi: 10.1016/j.jenvman.2019.109282
|
[23] |
X.G. Liu, Y. Li, W.D. Xue, J.L. Sun, and Q. Tang, Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 682. doi: 10.1007/s12613-018-1615-6
|
[24] |
D.L. Wang, Q. L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J Miner. Metall. Mater. (2020). DOI: 10.1007/s12613-020-2022-3
|
[25] |
J.J. Derksen, Simulations of hindered settling of flocculating spherical particles, Int. J. Multiphase Flow, 58(2014), p. 127. doi: 10.1016/j.ijmultiphaseflow.2013.09.004
|
[26] |
E. Javaheri and W.H. Finlay, Numerical simulation of flocculation and transport of suspended particles: Application to metered-dose inhalers, Int. J. Multiphase Flow, 64(2014), p. 28. doi: 10.1016/j.ijmultiphaseflow.2014.05.002
|
[27] |
S. Biggs, M. Habgood, G.J. Jameson, and Y.D. Yan, Aggregate structures formed via a bridging flocculation mechanism, Chem. Eng. J., 80(2000), No. 1-3, p. 13. doi: 10.1016/S1383-5866(00)00072-1
|
[28] |
Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
|
[29] |
A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010
|
[30] |
Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead-zinc mine in china, Math. Probl. Eng., 2019(2019), art. No. 2130617. doi: 10.1155/2019/2130617
|