Shi Wang, Xue-peng Song, Xiao-jun Wang, Qiu-song Chen, Jian-chun Qin, and Yu-xian Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1065-1074. https://doi.org/10.1007/s12613-019-1948-9
Cite this article as:
Shi Wang, Xue-peng Song, Xiao-jun Wang, Qiu-song Chen, Jian-chun Qin, and Yu-xian Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1065-1074. https://doi.org/10.1007/s12613-019-1948-9
Research Article

Influence of coarse tailings on flocculation settlement

+ Author Affiliations
  • Corresponding authors:

    Xiao-jun Wang    E-mail: xiaojun7903@126.com

    Qiu-song Chen    E-mail: qiusong.chen@csu.edu.cn

  • Received: 12 October 2019Revised: 5 December 2019Accepted: 27 December 2019Available online: 2 March 2020
  • The composition of tailings particles in mines plays a key role in the flocculation settlement of slurries. To study the influence of coarse particle tailings (CPTs) on the flocculation settlement of tailings slurries (TSs), static flocculent settling tests, scanning electron microscopy observations, and laser particle size analyses were conducted using the tailings obtained from a copper mine. The results demonstrate that (i) in the accelerated and free settling process, CPTs did not directly settle at the bottom of graduated cylinders; instead, they were netted by the flocculent structures (FSs) and settled together more quickly. The CPTs accelerate the rapid settlement of TSs; the acceleration effect is more obvious when the CPTs content is greater than 50wt%. (ii) The most appropriate flocculant unit consumption (FUC) is 20 g·t−1, and no substantial increase is observed in the flocculant settling velocity with an increase in the flocculant because the effective FSs did not substantially change and thus did not lead to a notable increase in the settling velocity of the solid–liquid interface (SLI). (iii) In the effective settling space of the thickening facility, free water quickly flowed from the pores of FSs, which is reflected in the period from 0 to 1 min.
  • loading
  • [1]
    K.A.S. Meraz, S.M.P. Vargas, J.T.L. Maldonado, J.M.C. Bravo, M.T.O. Guzman, and E.A.L. Maldonado, Eco-friendly innovation for nejayote coagulation–flocculation process using chitosan: Evaluation through zeta potential measurements, Chem. Eng. J., 284(2016), p. 536. doi: 10.1016/j.cej.2015.09.026
    [2]
    Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404. doi: 10.1007/s12613-019-1749-1
    [3]
    M. Tanguay, P. Fawell, and S. Adkins, Modelling the impact of two different flocculants on the performance of a thickener feedwell, Appl. Math. Modell., 38(2014), No. 17-18, p. 4262. doi: 10.1016/j.apm.2014.04.047
    [4]
    S. Wang, S. Li, J.C. Qin, G.Z. Xiao, G.C. Yang, and X. Feng, Effect of anionic polyacrylamide on the structural stability of thickened tailings slurry in pipeline transportation, Adv. Mater. Sci. Eng., 2018(2018), art. No. 7131487. doi: 10.1155/2018/7131487
    [5]
    S. Li, X.M. Wang, and Q.L. Zhang, Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant, Trans. Nonferrous Met. Soc. China, 26(2016), No. 7, p. 1975. doi: 10.1016/S1003-6326(16)64308-X
    [6]
    C. Sheng, C.L. Duan, Y.M. Zhao, C.Y. Zhou, and Y. Zhang, Simulation and experimental research on coarse coal slime particles’ separation in inclined tapered diameter separation bed, Can. J. Chem. Eng., 95(2017), No. 11, p. 2129. doi: 10.1002/cjce.22832
    [7]
    L. Botha and J.B.P. Soares, The influence of tailings composition on flocculation, Can. J. Chem. Eng., 93(2015), No. 9, p. 1514. doi: 10.1002/cjce.22241
    [8]
    H.Z. Jiao, H.J. Wang, A.X. Wu, X.W. Ji, Q.W. Yan, and X. Li, Rule and mechanism of flocculation sedimentation of unclassified tailings, J. Univ. Sci. Technol. Beijing, 32(2010), No. 6, p. 702.
    [9]
    H.E. Ries and B.L. Meyers, Flocculation mechanism: Charge neutralization and bridging, Science, 160(1968), No. 3835, p. 1449. doi: 10.1126/science.160.3835.1449
    [10]
    B.V. Balakin, G. Shamsutdinova, and P. Kosinski, Agglomeration of solid particles by liquid bridge flocculants: Pragmatic modelling, Chem. Eng. Sci., 122(2015), p. 173. doi: 10.1016/j.ces.2014.09.003
    [11]
    C. Autier, N. Azema, J.M. Taulemesse, and L. Clerc, Mesostructure evolution of cement pastes with addition of superplasticizers highlighted by dispersion indices, Powder Technol., 249(2013), p. 282. doi: 10.1016/j.powtec.2013.08.036
    [12]
    B.J. Lee, M.A. Schlautman, E. Toorman, and M. Fettweis, Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides, Water Res., 46(2012), No. 17, p. 5696. doi: 10.1016/j.watres.2012.07.056
    [13]
    R. Bürger, J.J.R. Damasceno, and K.H. Karlsen, A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section, Int. J. Miner. Process., 73(2004), No. 2-4, p. 183. doi: 10.1016/S0301-7516(03)00073-5
    [14]
    W.J. Zou, Y.J. Cao, C.B. Sun, and Z.J. Zhang, Particles interaction in selective flocculation flotation of fine coal, J. China Univ. Min. Technol., 44(2015), No. 6, p. 1061.
    [15]
    F.A. Benn, P.D. Fawell, J. Halewood, P.J. Austin, A.D. Costine, W.G. Jones, N.S. Francis, D.C. Druett, and D. Lester, Sedimentation and consolidation of different density aggregates formed by polymer-bridging flocculation, Chem. Eng. Sci., 184(2018), p. 111. doi: 10.1016/j.ces.2018.03.037
    [16]
    A.E. Kazzaz, Z.H. Feizi, F.G. Kong, and P. Fatehi, Interaction of poly(acrylic acid) and aluminum oxide particles in suspension: Particle size effect, Colloids Surf. A, 556(2018), p. 218. doi: 10.1016/j.colsurfa.2018.08.013
    [17]
    M.R. Garmsiri and H.H.A. Shirazi, The effect of grain size on flocculant preparation, Miner. Eng., 65(2014), p. 51. doi: 10.1016/j.mineng.2014.05.011
    [18]
    W.S. Ng, R. Sonsie, E. Forbes, and G.V. Franks, Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector, Miner. Eng., 77(2015), p. 64. doi: 10.1016/j.mineng.2015.02.013
    [19]
    X.J. Fei, Hydraulics of Transporting Slurry and Granular Material, Tsinghua University Press, Beijing, 1994, p. 105.
    [20]
    A.X. Wu, X.H. Liu, H.J. Wang, H.Z. Jiao, S.Y. Wang, S.Z. Liu, and Z.L. Xue, Microstructural evolution characteristics of an unclassified tailing paste in constant shearing, Chin. J. Eng., 37(2015), No. 2, p. 145.
    [21]
    Y. Feng, J. Kero, Q.X. Yang, Q.S. Chen, F. Engström, C. Samuelsson, and C.C. Qi, Mechanical activation of granulated copper slag and its influence on hydration heat and compressive strength of blended cement, Materials, 12(2019), No. 5, p. 772. doi: 10.3390/ma12050772
    [22]
    Y. He, Q.S. Chen, C.C. Qi, Q.L. Zhang, and C.C. Xiao, Lithium slag and fly ash-based binder for cemented fine tailings backfill, J. Environ. Manage., 248(2019), art. No. 109282. doi: 10.1016/j.jenvman.2019.109282
    [23]
    X.G. Liu, Y. Li, W.D. Xue, J.L. Sun, and Q. Tang, Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 682. doi: 10.1007/s12613-018-1615-6
    [24]
    D.L. Wang, Q. L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J Miner. Metall. Mater. (2020). DOI: 10.1007/s12613-020-2022-3
    [25]
    J.J. Derksen, Simulations of hindered settling of flocculating spherical particles, Int. J. Multiphase Flow, 58(2014), p. 127. doi: 10.1016/j.ijmultiphaseflow.2013.09.004
    [26]
    E. Javaheri and W.H. Finlay, Numerical simulation of flocculation and transport of suspended particles: Application to metered-dose inhalers, Int. J. Multiphase Flow, 64(2014), p. 28. doi: 10.1016/j.ijmultiphaseflow.2014.05.002
    [27]
    S. Biggs, M. Habgood, G.J. Jameson, and Y.D. Yan, Aggregate structures formed via a bridging flocculation mechanism, Chem. Eng. J., 80(2000), No. 1-3, p. 13. doi: 10.1016/S1383-5866(00)00072-1
    [28]
    Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
    [29]
    A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010
    [30]
    Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead-zinc mine in china, Math. Probl. Eng., 2019(2019), art. No. 2130617. doi: 10.1155/2019/2130617
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1422) PDF Downloads(73) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return