Zhan Qiao, Chong Li, Hong-jun Zhang, Hong-yan Liang, Yong-chang Liu,  and Yong Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1123-1132. https://doi.org/10.1007/s12613-019-1949-8
Cite this article as:
Zhan Qiao, Chong Li, Hong-jun Zhang, Hong-yan Liang, Yong-chang Liu,  and Yong Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1123-1132. https://doi.org/10.1007/s12613-019-1949-8
Research Article

Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations

+ Author Affiliations
  • Corresponding authors:

    Chong Li    E-mail: lichongme@tju.edu.cn

    Hong-jun Zhang    E-mail: zhanghongjunzg@163.com

    Yong-chang Liu    E-mail: licmtju@163.com

  • Received: 17 October 2019Revised: 1 December 2019Accepted: 11 December 2019Available online: 2 March 2020
  • Inconel 718 is a Ni–Fe-based superalloy widely used in aerospace engines because of its excellent mechanical properties. However, the inferior stability of the γ″ phase limits the application of Inconel 718, which coarsens rapidly at temperatures greater than 650°C. Further improving the temperature tolerance of Inconel 718 requires optimization of the phase configuration via modification of the alloy’s chemical composition. Given the aforementioned objective, this work was conducted to study the precipitation behavior and thermal stability of the strengthening phases with various structures in modified Inconel 718 alloys by tailoring the Al/Ti ratio. With increasing Al/Ti ratio, three particle configurations were formed: γ′/γ″ composite, isolated γ′, and γ′/γ″/γ′ composite particles. The results of aging tests demonstrate that the isolated γ′ and the γ′/γ″/γ′ composite structure exhibited better thermal stability at temperature as high as 800°C. The isolated γ′ exhibited a reduced coarsening rate compared with the γ′/γ″/γ′ composite particles because the isolated γ′ phase was rich in Al, Ti, and Nb. However, the γ′/γ″ composite particles coarsened and decomposed rapidly during aging at temperatures greater than 700°C because of the lower stability resulting from the larger number of γ″ particles. The obtained results provide necessary data for the compositional optimization of novel 718-type alloys.

  • loading
  • [1]
    Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, and H.J. Li, Recent progress on evolution of precipitates in Inconel 718 superalloy, Acta Metall. Sin., 52(2016), No. 10, p. 1259.
    [2]
    X. Zhang, H.W. Li, M. Zhan, Z.B. Zheng, J. Gao, and G.D. Shao, Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations, J. Mater. Sci. Technol., 36(2020), p. 79. doi: 10.1016/j.jmst.2019.08.008
    [3]
    H.J. Zhang, C. Li, Y.C. Liu, Q.Y. Guo, and H.J. Li, Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy, Mater. Sci. Eng. A, 677(2016), p. 515. doi: 10.1016/j.msea.2016.09.088
    [4]
    H.J. Zhang, C. Li, Y.C. Liu, Q.Y. Guo, Y. Huang, H.J. Li, and J.X. Yu, Effect of hot deformation on γ″and δ phase precipitation of Inconel 718 alloy during deformation & isothermal treatment, J. Alloys Compd., 716(2017), p. 65. doi: 10.1016/j.jallcom.2017.05.042
    [5]
    H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, Y. Huang, H.J. Li, and Y.C. Liu, Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization, Mater. Charact., 133(2017), p. 138. doi: 10.1016/j.matchar.2017.09.032
    [6]
    K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889. doi: 10.1007/s12613-019-1802-0
    [7]
    Y. Han, P. Deb, and M.C. Chaturvedi, Coarsening behaviour of γ″-and γ'-particles in Inconel alloy 718, Met. Sci., 16(1982), No. 12, p. 555. doi: 10.1179/030634582790427118
    [8]
    K. Sano, N. Oono, S. Ukai, S. Hayashi, T. Inoue, S. Yamashita, and T. Yoshitake, γ″-Ni3Nb precipitate in Fe–Ni base alloy, J. Nucl. Mater., 442(2013), No. 1-3, p. 389. doi: 10.1016/j.jnucmat.2013.07.037
    [9]
    C.K.L. Davies, P. Nash, and P.N. Steven, The effect of volume fraction of precipitate on Ostwald ripening, Acta Metall., 28(1980), No. 2, p. 179. doi: 10.1016/0001-6160(80)90067-X
    [10]
    J. Wu, Y.C. Liu, C. Li, Y.T. Wu, X.C. Xia, and H.J. Li, Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents, Acta Metall. Sin., 56(2020), No. 1, p. 21.
    [11]
    J.P. Collier, S.H. Wong, J.K. Tien, and J.C. Phillips, The effect of varying AI, Ti, and Nb content on the phase stability of INCONEL 718, Metall. Trans. A, 19(1988), No. 7, p. 1657. doi: 10.1007/BF02645133
    [12]
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Precipitation and room temperature deformation behavior of Inconel 718, [in] Proceedings of Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 1994, p. 419.
    [13]
    E.C. Guo and F.Q. Xu, Superalloy 718—Metallurgy and Applications, [in] Proceedings of the International Symposium on the Metallurgy and Applications of Superalloy 718, Pittsburgh, 1989, p. 567.
    [14]
    J.X. Dong, X.S. Xie, and S.H. Zhang, Enhancements of thermal structure stability in Ni-base superalloy, Scr. Metall. Mater., 28(1993), No. 12, p. 1477. doi: 10.1016/0956-716X(93)90578-G
    [15]
    Y.L. Shao, J. Xu, H. Wang, Y.W. Zhang, J. Jia, J.T. Liu, H.L. Huang, M. Zhang, Z.C. Wang, H.F. Zhang, and B.F. Hu, Effect of Ti and Al on microstructure and partitioning behavior of alloying elements in Ni-based powder metallurgy superalloys, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 500. doi: 10.1007/s12613-019-1757-1
    [16]
    D. Zhao and P.K. Chaudhury, Effect of starting grain size on as-deformed microstructure in high temperature deformation of alloy 718, [in] Proceedings of Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 1994, p. 303.
    [17]
    X.S. Xie, G.L. Wang, J.X. Dong, C.M. Xu, W.D. Cao, and R.L. Kennedy, Structure stability study on a newly developed nickel-base superalloy—Allvac® 718PlusTM, [in] Proceedings of the Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives, Pittsburgh, 2005, p. 179.
    [18]
    S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie, Alloy design and development of INCONEL718 type alloy, Mater. Sci. Eng. A, 499(2009), No. 1-2, p. 215. doi: 10.1016/j.msea.2007.11.115
    [19]
    J.P. Collier, A.O. Selius, and J.K. Tien, On developing a microstructurally and thermally stable iron–nickel base superalloy, [in] Superalloys 1988, Warrendale, 1988, p. 43.
    [20]
    R.B. Bhavsar, A. Collins, and S. Silverman, Use of alloy 718 and 725 in oil and gas industry, [in] Proceedings of the Fifth International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 2001, p. 47.
    [21]
    J.F. Radavich and D.J. Meyers, Thermomechanical processing of P/M alloy 718, [in] Superalloys 1984, Pittsburgh, 1984, p. 347.
    [22]
    J.F. Radavich and W.H. Couts, Factors affecting delta phase precipitation and growth at hot work temperatures for direct aged IN718, [in] Superalloys 1984, Pittsburgh, 1984, p. 497.
    [23]
    S. Antonov, M. Detrois, R.C. Helmink, and S. Tin, Precipitate phase stability and compositional dependence on alloying additions in γ–γ'–δ–η Ni-base superalloys, J. Alloys Compd., 626(2015), p. 76. doi: 10.1016/j.jallcom.2014.11.155
    [24]
    N. Paton, T. Cabral, K. Bowen, and T. Tom, Spraycast-X IN718 processing benefits, [in] Proceedings of the Fourth International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Warrendale, 1997, p. 1.
    [25]
    R. Cozar and A. Pineau, Morphology of γ' and γ″ precipitates and thermal stability of inconel 718 type alloys, Metall. Trans., 4(1973), p. 47. doi: 10.1007/BF02649604
    [26]
    S.T. Wlodek and R.D. Field, The effect of long time exposure on alloy 718, [in] Proceedings of Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 1994, p. 659.
    [27]
    C. Ruiz, A. Obabueki, and K. Gillespie, Evaluation of the microstructure and mechanical properties of delta processed alloy 718, [in] Superalloy 1992, Warrendale, 1992, p. 33.
    [28]
    J. He, G. Han, S. Fukuyama, and K. Kokogawa, Interfaces in a modified Inconel 718 with compact precipitates, Acta Mater., 46(1998), No. 1, p. 215. doi: 10.1016/S1359-6454(97)00221-8
    [29]
    A.J. Ardell, Precipitation hardening, Metall. Trans. A, 16(1985), p. 2131. doi: 10.1007/BF02670416
    [30]
    M.K. Miller, S.S. Babu, and M.G. Burke, Comparison of the phase compositions in alloy 718 measured by atom probe tomography and predicted by thermodynamic calculations, Mater. Sci. Eng. A, 327(2002), No. 1, p. 84. doi: 10.1016/S0921-5093(01)01881-0
    [31]
    P.J. Phillips, D. Mcallister, Y.P. Gao, D.C. Lv, R.E.A. Williams, B. Peterson, Y.Z. Wang, and M.J. Mills, Nano γ'/γ″ composite precipitates in Alloy 718, Appl. Phys. Lett., 100(2012), art. No. 211913. doi: 10.1063/1.4721456
    [32]
    Q.Y. Guo, Y.M. Li, B. Chen, R. Ding, L.M. Yu, and Y.C. Liu. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel, Acta Metall. Sin., 2020. https://doi.org/10.11900/0412.1961.2020.00109.
    [33]
    A.J. Detor, R. DiDomizio, R. Sharghi–Moshtaghin, N. Zhou, R.P. Shi, Y.Z. Wang, D.P. McAllister, and M.J. Mills, Enabling large superalloy parts using compact coprecipitation of γ' and γ'', Metall. Mater. Trans. A, 49(2018), No. 3, p. 708. doi: 10.1007/s11661-017-4356-7
    [34]
    K. Kulawik, P.A. Buffat, A. Kruk, A.M. Wusatowska–Sarnek, and A. Czyrska–Filemonowicz, Imaging and characterization of γ' and γ″ nanoparticles in Inconel 718 by EDX elemental mapping and FIB–SEM tomography, Mater. Charact., 100(2015), p. 74. doi: 10.1016/j.matchar.2014.12.012
    [35]
    N. Zhou, C. Shen, M.J. Mills, J. Li, and Y.Z. Wang, Modeling displacive–diffusional coupled dislocation shearing of γ' precipitates in Ni-base superalloys, Acta Mater., 59(2011), No. 9, p. 3484. doi: 10.1016/j.actamat.2011.02.022
    [36]
    W.T. Geng, D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada, Stability of nanoscale co-precipitates in a superalloy: A combined first-principles and atom probe tomography study, Phys. Rev. B, 76(2007), art. No. 224102. doi: 10.1103/PhysRevB.76.224102
    [37]
    X.S. Xie, S.H. Fu, S.Q. Zhao, and J.X. Dong, The precipitation strengthening effect of Nb, Ti and Al in cast/wrought Ni-base superalloys, Mater. Sci. Forum, 638-642(2010), p. 2363. doi: 10.4028/www.scientific.net/MSF.638-642.2363
    [38]
    A.K. Jena and M.C. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys, J. Mater. Sci., 19(1984), No. 10, p. 3121. doi: 10.1007/BF00549796
    [39]
    W. Hume–Rothery, The Engel–Brewer theories of metals and alloys, Prog. Mater. Sci., 13(1968), p. 229. doi: 10.1016/0079-6425(68)90022-4
    [40]
    J. Wu, C. Li, Y.C. Liu, Y.T. Wu, Q.Y. Guo, H.J. Li, and H.P. Wang, Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy, Mater. Sci. Eng. A, 743(2019), p. 623. doi: 10.1016/j.msea.2018.11.126
    [41]
    M.Q. Wang, J.H. Du, Q. Deng, Z.L. Tian, and J. Zhu, Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus, J. Alloys Compd., 701(2017), p. 635. doi: 10.1016/j.jallcom.2017.01.145
    [42]
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Some aspects of the precipitation of metastable intermetallic phases in Inconel 718, Metall. Trans. A, 23(1992), No. 7, p. 2015. doi: 10.1007/BF02647549
    [43]
    M. Sundararaman and P. Mukhopadhyay, Overlapping of γ' precipitate variants in Inconel 718, Mater. Charact., 31(1993), No. 4, p. 191. doi: 10.1016/1044-5803(93)90062-Z
    [44]
    C. Slama, C. Servant, and G. Cizeron, Aging of the Inconel 718 alloy between 500 and 750°C, J. Mater. Res., 12(1997), No. 9, p. 2298. doi: 10.1557/JMR.1997.0306
    [45]
    Y.C. Liu, H.J. Zhang, Q.Y. Guo, X.S. Zhou, Z.Q. Ma, Y. Huang, and H.J. Li, Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency, Acta Metall. Sin., 54(2018), No. 11, p. 1653.
    [46]
    Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, and H.J. Li, Coarsening behavior of γ' precipitates in the γ' + γ area of a Ni3Al-based alloy, J. Alloys Compd., 771(2019), p. 526. doi: 10.1016/j.jallcom.2018.08.265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(3115) PDF Downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return