Guo-quan Lai, Hong-zhong Liu, Bang-dao Chen, Dong Niu, Biao Lei,  and Wei-tao Jiang, Electrodeposition of functionally graded Ni−W/Er2O3 rare earth nanoparticle composite film, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 818-829. https://doi.org/10.1007/s12613-019-1953-z
Cite this article as:
Guo-quan Lai, Hong-zhong Liu, Bang-dao Chen, Dong Niu, Biao Lei,  and Wei-tao Jiang, Electrodeposition of functionally graded Ni−W/Er2O3 rare earth nanoparticle composite film, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 818-829. https://doi.org/10.1007/s12613-019-1953-z
Research Article

Electrodeposition of functionally graded Ni−W/Er2O3 rare earth nanoparticle composite film

+ Author Affiliations
  • Corresponding authors:

    Hong-zhong Liu    E-mail: hzliu@mail.xjtu.edu.cn

    Bang-dao Chen    E-mail: bdchen@mail.xjtu.edu.cn

  • Received: 3 July 2019Revised: 13 November 2019Accepted: 20 November 2019Available online: 8 January 2020
  • Multi-layered functionally graded (FG) structure Ni−W/Er2O3 nanocomposite films were prepared by continuously changing the deposition parameters, in which the Er2O3 and W contents varied with thickness. The microstructure and chemical composition of the electrodeposited Ni−W/Er2O3 films were determined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The anti-corrosion and wear properties of the electrodeposition films were investigated by electrochemical measurement and ball-on-disk friction test. The microhardness distribution of the cross section of nanocomposites was measured by nanoindentation. The results showed that with decreasing agitation rate or increasing average current density, the contents of Er2O3 nanoparticles and tungsten were distributed in a gradient along the thickness, and the contents on the surface were larger. By comparison, FG Ni−W/Er2O3 films had better anti-corrosion and wear properties than the uniform Ni−W/Er2O3 films. Atomic force microscopy (AFM) and profilometry measurements indicated that Er2O3 nanoparticles had an effect on the surface roughness.

  • loading
  • [1]
    B. Bostani, N.P. Ahmadi, S. Yazdani, and R. Arghavanian, Synthesis and characterization of functionally gradient Ni−ZrO2 composite coating, Prot. Met. Phys. Chem. Surf., 54(2018), No. 2, p. 222. doi: 10.1134/S2070205118020156
    [2]
    B.S. Li, W.W. Zhang, W. Zhang, and Y.X. Huan, Preparation of Ni−W/SiC nanocomposite coatings by electrochemical deposition, J. Alloys Compd., 702(2017), p. 38. doi: 10.1016/j.jallcom.2017.01.239
    [3]
    B.S, Li, W.W, Zhang, Y.X, Huan, and J. Dong, Synthesis and characterization of Ni−B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor, Surf. Coat. Technol., 337(2018), p. 186. doi: 10.1016/j.surfcoat.2018.01.018
    [4]
    L. Shi, C.F. Sun, P. Gao, F. Zhou, and W.M. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni−Co/SiC nanocomposite coating, Appl. Surf. Sci., 252(2006), No. 10, p. 3591. doi: 10.1016/j.apsusc.2005.05.035
    [5]
    J.X, Zhang, X.M. Wang, D.D. Qin, Z.H. Xue, and X.Q. Lu, Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction, Appl. Surf. Sci., 320(2014), p. 73. doi: 10.1016/j.apsusc.2014.09.056
    [6]
    L.P. Wang, Y. Gao, Q.J. Xue, H.W. Liu, and T. Xu, Graded composition and structure in nanocrystalline Ni−Co alloys for decreasing internal stress and improving tribological properties, J. Phys. D:Appl. Phys., 38(2005), No. 8, p. 1318. doi: 10.1088/0022-3727/38/8/033
    [7]
    U. Wiklund, J. Gunnars, and S. Hogmark, Influence of residual stresses on fracture and delamination of thin hard coatings, Wear, 232(1999), No. 2, p. 262. doi: 10.1016/S0043-1648(99)00155-6
    [8]
    T. Yamasaki, P. Schloβmacher, K. Ehrlich, and Y. Ogino, Formation of amorphous electrodeposited Ni−W alloys and their nanocrystallization, Nanostruct. Mater., 10(1998), No. 3, p. 375. doi: 10.1016/S0965-9773(98)00078-6
    [9]
    Y.S. Dong, P.H. Lin, and H.X. Wang, Electroplating preparation of Ni−Al2O3 graded composite coatings using a rotating cathode, Surf. Coat. Technol., 200(2006), No. 11, p. 3633. doi: 10.1016/j.surfcoat.2004.11.024
    [10]
    K.A. Khor and Y.W. Gu, Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings, Mater. Sci. Eng. A, 277(2000), No. 1-2, p. 64. doi: 10.1016/S0921-5093(99)00565-1
    [11]
    X. Peng, J. Yan, L. Zheng, and F. Wang, Oxidation of a novel CeO2‐dispersed chromium coating in wet air, Mater. Corros., 62(2011), No. 6, p. 514. doi: 10.1002/maco.201005868
    [12]
    S. Put, J. Vleugels, and O. Van der Biest, Functionally graded WC−Co materials produced by electrophoretic deposition, Scripta Mater., 45(2001), No. 10, p. 1139. doi: 10.1016/S1359-6462(01)01126-5
    [13]
    B.L. Han and X.C. Lu, Effect of La2O3 on microstructure, mechanical and tribological properties of Ni−W coatings, Chin. Sci. Bull., 54(2009), No. 24, p. 4566.
    [14]
    Z.C. Guo and X.Y. Zhu, Studies on properties and structure of electrodeposited RE−Ni−W−B−SiC composite coating, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 325. doi: 10.1016/S0921-5093(03)00666-X
    [15]
    B.S. Li, W.W. Zhang, D.D. Li, Y.X. Huan, and J. Dong, Microstructural, surface and electrochemical properties of a novel Ni−B/Ni−W−BN duplex composite coating by co-electrodeposition, Appl. Surf. Sci., 458(2018), p. 305. doi: 10.1016/j.apsusc.2018.07.100
    [16]
    E. García-Lecina, I. García-Urrutia, J.A. Díez, M. Salvo, F. Smeacetto, G. Gautier, R. Seddon, and R. Martin, Electrochemical preparation and characterization of Ni/SiC compositionally graded multilayered coatings, Electrochim. Acta, 54(2009), No. 9, p. 2556. doi: 10.1016/j.electacta.2008.04.064
    [17]
    C.T. Low, R.G.A. Wills, and F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 201(2006), No. 1-2, p. 371. doi: 10.1016/j.surfcoat.2005.11.123
    [18]
    P. Indyka, E. Beltowska-Lehman, L. Tarkowski, A. Bigos, and E. Garcia-Lecina, Structure characterization of nanocrystalline Ni−W alloys obtained by electrodeposition, J. Alloys Compd., 590(2014), p. 75. doi: 10.1016/j.jallcom.2013.12.085
    [19]
    S. Lee and S. Kim, Electrochemical synthesis and characterization of erbium oxide, Ceram. Int., 42(2016), No. 16, p. 18425. doi: 10.1016/j.ceramint.2016.08.176
    [20]
    M.F. Zhang, C.F. Zhu, C.P. Yang, and Y.N. Lv, Preparation of amorphous Ni−W coating for the current collector of Na/S battery by electrodeposition, Surf. Coat. Technol., 346(2018), p. 40. doi: 10.1016/j.surfcoat.2018.04.041
    [21]
    P.A. Orrillo, S.B. Ribotta, L.M. Gassa, G. Benítez, R.C. Salvarezza, and M.E. Vela, Phosphonic acid functionalization of nanostructured Ni−W coatings on steel, Appl. Surf. Sci., 433(2018), p. 292. doi: 10.1016/j.apsusc.2017.09.222
    [22]
    E.W. Brooman, Corrosion performance of environmentally acceptable alternatives to cadmium and chromium coatings: Chromium—Part II, Met. Finish., 98(2000), No. 8, p. 39. doi: 10.1016/S0026-0576(00)82740-3
    [23]
    S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, and O. Takai, Development of Ni−W alloy plating as a substitution of hard chromium plating, Trans. Mater. Res. Soc. Jpn, 41(2016), No. 1, p. 35. doi: 10.14723/tmrsj.41.35
    [24]
    L. Hao, J. Wei, and F.X. Gan, Electroless Ni−P coating on W−Cu composite via three different activation processes, Surf. Eng., 25(2009), No. 5, p. 372. doi: 10.1179/174329408X326371
    [25]
    S.A. Lajevardi, T. Shahrabi, and J.A. Szpunar, Tribological properties of functionally graded Ni−Al2O3 nanocomposite coating, J. Electrochem. Soc., 164(2017), No. 6, p. D275. doi: 10.1149/2.0731706jes
    [26]
    H. Li, Y. He, T. He, D.Y. Qing, F.J. Luo, Y. Fan, and X. Chen, Ni−W/BN(h) electrodeposited nanocomposite coating with functionally graded microstructure, J. Alloys Compd., 704(2017), p. 32. doi: 10.1016/j.jallcom.2017.02.037
    [27]
    D.V. Suvorov, G.P. Gololobov, D.Y. Tarabrin, E.V. Slivkin, S.M. Karabanov, and A. Tolstoguzov, Electrochemical deposition of Ni−W crack-free coatings, Coatings, 8(2018), No. 7, p. 233. doi: 10.3390/coatings8070233
    [28]
    N. Eliaz, T.M. Sridhar, and E. Gileadi, Synthesis and characterization of nickel tungsten alloys by electrodeposition, Electrochim. Acta, 50(2005), No. 14, p. 2893. doi: 10.1016/j.electacta.2004.11.038
    [29]
    A. Chianpairot, G. Lothongkum, C.A. Schuh, and Y. Boonyongmaneerat, Corrosion of nanocrystalline Ni−W alloys in alkaline and acidic 3.5wt% NaCl solutions, Corros. Sci., 53(2011), No. 3, p. 1066. doi: 10.1016/j.corsci.2010.12.001
    [30]
    O. Younes and E. Gileadi, Electroplating of high tungsten content Ni/W alloys, Electrochem. Solid-State Lett., 3(2000), No. 12, p. 543.
    [31]
    O. Younes and E. Gileadi, Electroplating of Ni/W alloys: I. Ammoniacal citrate baths, J. Electrochem. Soc., 149(2002), No. 2, p. C100. doi: 10.1149/1.1433750
    [32]
    M. Ma, V.S. Donepudi, G. Sandi, Y.K. Sun, and J. Prakash, Electrodeposition of nano-structured nickel−21% tungsten alloy and evaluation of oxygen reduction reaction in a 1% sodium hydroxide solution, Electrochim. Acta, 49(2004), No. 25, p. 4411. doi: 10.1016/j.electacta.2004.04.037
    [33]
    K.R. Sriraman, S.G.S. Raman, and S.K. Seshadri, Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni−W alloys, Mater. Sci. Eng. A, 418(2006), No. 1-2, p. 303. doi: 10.1016/j.msea.2005.11.046
    [34]
    N. Guglielmi, Kinetics of the deposition of inert particles from electrolytic baths, J. Electrochem. Soc., 119(1972), No. 8, p. 1009. doi: 10.1149/1.2404383
    [35]
    D. Landolt, Electrochemical and materials science aspects of alloy deposition, Electrochim. Acta, 39(1994), No. 8-9, p. 1075. doi: 10.1016/0013-4686(94)E0022-R
    [36]
    M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam, and V. Torabinejad, Electrodeposition of Ni−W−Al2O3 nanocomposite coating with functionally graded microstructure, J. Alloys Compd., 666(2016), p. 217. doi: 10.1016/j.jallcom.2016.01.031
    [37]
    B.S. Li, D.D. Li, W. Chen, Y.Y. Liu, J. Zhang, Y.L. Wei, W.W. Zhang, and W.C. Jia, Effect of current density and deposition time on microstructure and corrosion resistance of Ni−W/TiN nanocomposite coating, Ceram. Int., 45(2019), No. 4, p. 4870. doi: 10.1016/j.ceramint.2018.11.184
    [38]
    R.J. Sen, S. Das, and K. Das, Effect of stirring rate on the microstructure and microhardness of Ni−CeO2 nanocomposite coating and investigation of the corrosion property, Surf. Coat. Technol., 205(2011), No. 13-14, p. 3847. doi: 10.1016/j.surfcoat.2011.01.057
    [39]
    F.Z. Yang, Y.F. Guo, L. Huang, S.K. Xu, and S.M. Zhou, Electrodeposition, structure and corrosion resistance of nanocrystalline Ni−W alloy, Chin. J. Chem., 22(2004), No. 3, p. 228.
    [40]
    S.M.L. Baghal, M.H. Sohi, and A. Amadeh, A functionally gradient nano-Ni−Co/SiC composite coating on aluminum and its tribological properties, Surf. Coat. Technol., 206(2012), No. 19-20, p. 4032. doi: 10.1016/j.surfcoat.2012.03.084
    [41]
    L.M. Chang, Z.T. Wang, S.Y. Shi, and W. Liu, Study on microstructure and properties of electrodeposited Ni−W alloy coating with glycolic acid system, J. Alloys Compd., 509(2011), No. 5, p. 1501. doi: 10.1016/j.jallcom.2010.10.136
    [42]
    Y.W. Yao, S.W. Yao, L. Zhang, and H.Z. Wang, Electrodeposition and mechanical and corrosion resistance properties of Ni−W/SiC nanocomposite coatings, Mater. Lett., 61(2007), No. 1, p. 67. doi: 10.1016/j.matlet.2006.04.007
    [43]
    K.H. Hou, H.T. Wang, H.H. Sheu, and M.D. Ger, Preparation and wear resistance of electrodeposited Ni−W/diamond composite coatings, Appl. Surf. Sci., 308(2014), p. 372. doi: 10.1016/j.apsusc.2014.04.175
    [44]
    N. Udompanit, P. Wangyao, S. Henpraserttae, and Y. Boonyongmaneerat, Wear response of composition-modulated multilayer Ni−W coatings, Adv. Mater. Res., 1025-1026(2014), p. 302. doi: 10.4028/www.scientific.net/AMR.1025-1026.302
    [45]
    H.T. Wang, H.H. Sheu, M.D. Ger, and K.H. Hou, The effect of heat treatment on the microstructure and mechanical properties of electrodeposited nanocrystalline Ni−W/diamond composite coatings, Surf. Coat. Technol., 259(2014), p. 268. doi: 10.1016/j.surfcoat.2014.03.064
    [46]
    Y.W. Yao, Preparation, mechanical property and wear resistance of Ni−W/Al2O3 composite coatings, Surf. Eng., 24(2008), No. 3, p. 226. doi: 10.1179/174329408X282613
    [47]
    K.H. Hou and Y.C. Chen, Preparation and wear resistance of pulse electrodeposited Ni−W/Al2O3 composite coatings, Appl. Surf. Sci., 257(2011), No. 15, p. 6340. doi: 10.1016/j.apsusc.2011.01.089
    [48]
    E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Kot, and L. Tarkowski, Electrodeposition of nanocrystalline Ni−W coatings strengthened by ultrafine alumina particles, Surf. Coat. Technol., 211(2012), p. 62. doi: 10.1016/j.surfcoat.2011.10.021
    [49]
    L.P. Wang, J.Y. Zhang, Z.X. Zeng, Y.M. Lin, L.T. Hu, and Q.J. Xue, Fabrication of a nanocrystalline Ni−Co/CoO functionally graded layer with excellent electrochemical corrosion and tribological performance, Nanotechnology, 17(2006), No. 18, p. 4614. doi: 10.1088/0957-4484/17/18/014
    [50]
    B. Bakhit, A. Akbari, F. Nasirpouri, and M.G. Hosseini, Corrosion resistance of Ni−Co alloy and Ni−Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique, Appl. Surf. Sci., 307(2014), p. 351. doi: 10.1016/j.apsusc.2014.04.037
    [51]
    F. Daneshvar-Fatah and F. Nasirpouri, A study on electrodeposition of Ni-noncovalnetly treated carbon nanotubes nanocomposite coatings with desirable mechanical and anti-corrosion properties, Surf. Coat. Technol., 248(2014), p. 63. doi: 10.1016/j.surfcoat.2014.03.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1265) PDF Downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return