Cite this article as: |
Chun-bao Sun, Xiao-liang Zhang, Jue Kou, and Yi Xing, A review of gold extraction using noncyanide lixiviants: Fundamentals, advancements, and challenges toward alkaline sulfur-containing leaching agents, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 417-431. https://doi.org/10.1007/s12613-019-1955-x |
Xiao-liang Zhang E-mail: heutzxl2009@126.com
Yi Xing E-mail: xingyi@ustb.edu.cn
Alkaline sulfur-containing lixiviants, including thiosulfate, polysulfides, and alkaline sulfide solutions, stand out as a promising class of alternatives to cyanide because of their low toxicity, high efficiency, and strong adaptability. In this paper, we summarized the research progress and remaining challenges in gold extraction using these noncyanide reagents. After a brief introduction to the preparation method, the transformation process of various sulfur-containing species in alkaline solutions was discussed. Thereafter, some insights into the mechanism of gold leaching in alkaline sulfur-containing solutions were presented from different aspects, including thermodynamics analysis, electrochemical dissolution, and leaching kinetics. Moreover, recent progress in in-situ generation of sulfur-containing anions from gold-bearing sulfide minerals was outlined as well. Gold passivation caused by sulfur species was discussed in particular because it is considered the greatest challenge facing sulfur-containing leaching systems. Alkaline sulfur-containing lixiviants are expected to serve as alternatives in industrial applications of gold extraction, particularly for refractory gold ores containing copper and carbonaceous matter.
[1] |
P.L. Breuer, X. Dai, and M.I. Jeffrey, Leaching of gold and copper minerals in cyanide deficient copper solutions, Hydrometallurgy, 78(2005), No. 3-4, p. 156. doi: 10.1016/j.hydromet.2005.02.004
|
[2] |
G. Ofori-Sarpong and K. Osseo-Asare, Preg-robbing of gold from cyanide and non-cyanide complexes: Effect of fungi pretreatment of carbonaceous matter, Int. J. Miner. Process., 119(2013), p. 27. doi: 10.1016/j.minpro.2012.12.007
|
[3] |
S.R. La Brooy, H.G. Linge, and G.S. Walker, Review of gold extraction from ores, Miner. Eng., 7(1994), No. 10, p. 1213. doi: 10.1016/0892-6875(94)90114-7
|
[4] |
X. Dai, A. Simons, and P. Breuer, A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores, Miner. Eng., 25(2012), No. 1, p. 1. doi: 10.1016/j.mineng.2011.10.002
|
[5] |
C.A. Johnson, The fate of cyanide in leach wastes at gold mines: An environmental perspective, Appl. Geochem., 57(2015), p. 194. doi: 10.1016/j.apgeochem.2014.05.023
|
[6] |
G. Senanayake, Gold leaching in non-cyanide lixiviant systems: Critical issues on fundamentals and applications, Miner. Eng., 17(2004), No. 6, p. 785. doi: 10.1016/j.mineng.2004.01.008
|
[7] |
V. Smolyaninov, G. Shekhvatova, and M. Vainshtein, Gold leaching by organic base polythionates: New non-toxic and secure technology, SpringerPlus, 3(2014), No. 1, p. 1. doi: 10.1186/2193-1801-3-1
|
[8] |
J. Li and J.D. Miller, A review of gold leaching in acid thiourea solutions, Miner. Process. Extr. Metall. Rev., 27(2006), No. 3, p. 177. doi: 10.1080/08827500500339315
|
[9] |
R. Sousa, A. Futuro, A. Fiúza, M.C. Vila, and M.L. Dinis, Bromine leaching as an alternative method for gold dissolution, Miner. Eng., 118(2018), p. 16. doi: 10.1016/j.mineng.2017.12.019
|
[10] |
R. Ahtiainen and M. Lundström, Cyanide-free gold leaching in exceptionally mild chloride solutions, J. Cleaner Prod., 234(2019), p. 9. doi: 10.1016/j.jclepro.2019.06.197
|
[11] |
S.S. Konyratbekova, A. Baikonurova, and A. Akcil, Non-cyanide leaching processes in gold hydrometallurgy and iodine-iodide applications: A review, Miner. Process. Extr. Metall. Rev., 36(2015), No. 3, p. 198. doi: 10.1080/08827508.2014.942813
|
[12] |
C.G. Perea and O.J. Restrepo, Use of amino acids for gold dissolution, Hydrometallurgy, 177(2018), p. 79. doi: 10.1016/j.hydromet.2018.03.002
|
[13] |
E.A. Oraby, J.J. Eksteen, A. Karrech, and M. Attar, Gold extraction from paleochannel ores using an aerated alkaline glycine lixiviant for consideration in heap and in-situ leaching applications, Miner. Eng., 138(2019), p. 112. doi: 10.1016/j.mineng.2019.04.023
|
[14] |
Q.J. Wen, Y.F. Wu, X. Wang, Z.Y. Zhuang, and Y. Yu, Researches on preparation and properties of sodium polysulphide as gold leaching agent, Hydrometallurgy, 171(2017), p. 77. doi: 10.1016/j.hydromet.2017.04.008
|
[15] |
V.H. Ha, J.C. Lee, J. Jeong, H.T. Hai, and M.K. Jha, Thiosulfate leaching of gold from waste mobile phones, J. Hazard. Mater., 178(2010), No. 1-3, p. 1115. doi: 10.1016/j.jhazmat.2010.01.099
|
[16] |
M. Lampinen, A. Laari, and I. Turunen, Ammoniacal thiosulfate leaching of pressure oxidized sulfide gold concentrate with low reagent consumption, Hydrometallurgy, 151(2015), p. 1. doi: 10.1016/j.hydromet.2014.10.014
|
[17] |
Q. Wang, X.Z. Hu, F.T. Zi, P. Yang, Y.L. Chen, and S.L. Chen, Environmentally friendly extraction of gold from refractory concentrate using a copper–ethylenediamine–thiosulfate solution, J. Cleaner Prod., 214(2019), p. 860. doi: 10.1016/j.jclepro.2019.01.007
|
[18] |
H.A. White, The solubility of gold in thiosulfates and thiocyanates, S. Afr. J. Sci., 1(1905), No. 1, p. 211.
|
[19] |
R.M.G.S. Berezowsky and V.B. Sefton, Recovery of gold and silver from oxidation leach residues by applied to ammoniacal thiosulfate leaching, [in] The 108th AIME Annual Meeting, New Orleans, 1979, p. 17.
|
[20] |
M.I. Jeffrey, P.L. Breuer, and C.K. Chu, The importance of controlling oxygen addition during the thiosulfate leaching of gold ores, Int. J. Miner. Process., 72(2003), No. 1-4, p. 323. doi: 10.1016/S0301-7516(03)00108-X
|
[21] |
G. Hilson and A.J. Monhemius, Alternatives to cyanide in the gold mining industry: What prospects for the future?, J. Cleaner Prod., 14(2006), No. 12-13, p. 1158. doi: 10.1016/j.jclepro.2004.09.005
|
[22] |
E. Molleman and D. Dreisinger, The treatment of copper–gold ores by ammonium thiosulfate leaching, Hydrometallurgy, 66(2002), No. 1-3, p. 1. doi: 10.1016/S0304-386X(02)00080-4
|
[23] |
B. Xu, Y.B. Yang, Q. Li, T. Jiang, S.Q. Liu, and G.H. Li, The development of an environmentally friendly leaching process of a high C, As and Sb bearing sulfide gold concentrate, Miner. Eng., 89(2016), p. 138. doi: 10.1016/j.mineng.2016.01.011
|
[24] |
J. Wang, W. Wang, K.W. Dong, Y. Fu, and F. Xie, Research on leaching of carbonaceous gold ore with copper–ammonia–thiosulfate solutions, Miner. Eng., 137(2019), p. 232. doi: 10.1016/j.mineng.2019.04.013
|
[25] |
C.A. Fleming, J. McMullen, K.G. Thomas, and J.A. Wells, Recent advances in the development of an alternative to the cyanidation process: Thiosulfate leaching and resin in pulp, Min. Metall. Explor., 20(2003), No. 1, p. 1.
|
[26] |
D.M. Muir and M.G. Aylmore, Thiosulfate as an alternative lixiviant to cyanide for gold ores, Dev. Miner. Process., 15(2005), p. 541.
|
[27] |
M. Helm, J. Vaughan, W.P. Staunton, and J. Avraamides, An investigation of the carbonaceous component of preg-robbing gold ores, [in] World Gold Conference, 2009, p. 139.
|
[28] |
Y. Choi, J.Y. Baron, Q. Wang, J. Langhans, and P. Kondos, Thiosulfate processing-from lab curiosity to commercial application, [in] Proceedings of the World Gold, Brisbane, 2013, p. 45.
|
[29] |
D.M. Muir and M.G. Aylmore, Thiosulphate as an alternative to cyanide for gold processing—Issues and impediments, Miner. Process. Extr. Metall., 113(2004), No. 1, p. 2. doi: 10.1179/037195504225004661
|
[30] |
B. Xu, W.H. Kong, Q. Li, Y.B. Yang, T. Jiang, and X.L. Liu, A review of thiosulfate leaching of gold: Focus on thiosulfate consumption and gold recovery from pregnant solution, Metals, 7(2017), No. 6, p. 222. doi: 10.3390/met7060222
|
[31] |
B.C. Weissberg, Solubility of gold in hydrothermal alkaline sulphide solutions, Econ. Geol., 65(1970), No. 5, p. 551. doi: 10.2113/gsecongeo.65.5.551
|
[32] |
J.B. Hiskey and V.P. Atluri, Dissolution chemistry of gold and silver in different lixiviants, Miner. Process. Extr. Metall. Rev., 4(1988), No. 1-2, p. 95. doi: 10.1080/08827508808952634
|
[33] |
C. Anderson, E. Dahlgren, H.H. Huang, P.J. Miranda, D. Stacey, M. Jeffrey, and I. Chandra, Fundamentals and applications of alkaline sulfide leaching and recovery of gold, [in] CIM Gold Symposium, Calgary, 2005, p. 145.
|
[34] |
G.J. Sparrow and J.T. Woodcock, Cyanide and other lixiviant leaching systems for gold with some practical applications, Miner. Process. Extr. Metall. Rev., 14(1995), No. 3-4, p. 193. doi: 10.1080/08827509508914125
|
[35] |
G.C. Zhu, Z.H. Feng, and J.Y. Chen, Leaching of gold from sulphide concentrates with thiosulphate/polysulphide produced by disproportionation of elemental sulphur in ammoniacal media, [in] Hydrometallurgy’94, Dordrecht, 1994, p. 541.
|
[36] |
T.Z. Yang, X.G. Chen, W.D. Bin, Q.B. Chen, and Y.Y. Lu, Gold leaching in sodium polysulfide solution, J. Cent. South Inst. Min. Metall., 23(1992), No. 6, p. 687.
|
[37] |
C.G. Anderson and L.G. Twidwell, Antimony, arsenic, gold, mercury and tin separation, recovery, and fixation by alkaline sulfide hydrometallurgy, [in] Proceedings of Hydrometallurgy 2008, Sixth International Symposium, Littleton, 2008, p. 348.
|
[38] |
C.G. Anderson, The application and economics of industrial alkaline leaching of copper enargite concentrates, [in] Proceedings of Copper Cobalt Africa, SAIMM, 2015, p. 12.
|
[39] |
C.G. Anderson and L.G. Twidwell, Hydrometallurgical processing of gold-bearing copper enargite concentrates, Can. Metall. Q., 47(2008), No. 3, p. 337. doi: 10.1179/cmq.2008.47.3.337
|
[40] |
F.A. Parada Torres, The Alkaline Sodium Sulphide Leaching of Enargite [Dissertation], University of British Columbia, Vancouver, 2011, p. 87.
|
[41] |
N. Lau and M.D. Pluth, Reactive sulfur species (RSS): Persulfides, polysulfides, potential, and problems, Curr. Opin. Chem. Biol., 49(2019), p. 1.
|
[42] |
E. Rosén and R. Tegman, A preparative and X-ray powder diffraction study of the polysulfides Na2S2, Na2S4, and Na2S5, Acta Chem. Scand., 25(1971), p. 3329. doi: 10.3891/acta.chem.scand.25-3329
|
[43] |
C.G. Anderson and S.M. Nordwick, Pretreatment using alkaline sulfide leaching and nitrogen species catalyzed pressure oxidation on a refractory gold concentrate, [in] EPD Congress, Warrendale, 1996, p. 323.
|
[44] |
C.G. Anderson, Alkaline sulfide recovery of gold utilizing nitrogen species catalyzed pressure leaching, Hydrometallurgy, 1(2003), p. 75.
|
[45] |
B.Y. Yang, X.Z. Lan, J. Zhang, and A.Y. Han, Lime–sulphur–synthetic–solution (LSSS)—A new nontoxic reagent for extraction of gold, Precious Met., 18(1997), No. 2, p. 58.
|
[46] |
Z.H. Fang and B.L. Han, Leaching gold using oxidation products of elemental sulfur in Ca(OH)2 solution under oxygen pressure, Chin. J. Process Eng., 2(2002), No. 3, p. 230.
|
[47] |
M.M. Hojjatie, C.L.F. Lockhart, A. Dimitriadis, J. Van Cauwenbergh, and R. Van Dael, Continuous Process for Preparation of Calcium Thiosulfate Liquid Solution, U.S. Patent Appl. 8454929, 2013.
|
[48] |
J. Zhou, X.Z. Lan, and Q.L. Zhang, Preparation of sodium thiosulfate and sodium polysulfide mixture for gold leaching, Nonferrous Met. (Extr. Metall.)
|
[49] |
L.C. Zhao, C.B. Sun, S.Y. Li, and D.Z. Gong, Effects of lime sulphur synthetic solution on leaching characteristic of gold concentrates, Chin. J. Nonferrous Met., 25(2015), No. 3, p. 786.
|
[50] |
H. Wu, Y.L. Feng, H.R. Li, S.D. Liao, and H.J. Wang, Basic theory and optimization of gold containing antimony concentrate leaching by alkaline sulfide, Physicochem. Probl. Miner. Process., 55(2019), No. 1, p. 248.
|
[51] |
A. Rule and J.S. Thomas, XXIII.—The polysulphides of the alkali metals. Part I. The polysulphides of sodium, J. Chem. Soc. Trans., 105(1914), p. 177. doi: 10.1039/CT9140500177
|
[52] |
A. Kamyshny, A. Golfman, J. Gun, D. Rizkov, and O. Lev, Equilibrium distribution of polysulfide ions in aqueous solutions at 25°C: A new approach for the study of polysulfides’ equilibria, Environ. Sci. Technol., 38(2004), No. 24, p. 6633. doi: 10.1021/es049514e
|
[53] |
I. Filpponen, A. Guerra, A. Hai, L.A. Lucia, and D.S. Argyropoulos, Spectral monitoring of the formation and degradation of polysulfide ions in alkaline conditions, Ind. Eng. Chem. Res., 45(2006), No. 22, p. 7388. doi: 10.1021/ie060651p
|
[54] |
W.F. Giggenbach, Equilibria involving polysulfide ions in aqueous sulfide solutions up to 240°C, Inorg. Chem., 13(1974), No. 7, p. 1724. doi: 10.1021/ic50137a038
|
[55] |
S. Licht and J. Davis, Disproportionation of aqueous sulfur and sulfide: Kinetics of polysulfide decomposition, J. Phys. Chem. B, 101(1997), No. 14, p. 2540. doi: 10.1021/jp962661h
|
[56] |
D.S. Argyropoulos, Y.H. Hou, R. Ganesaratnam, D.N. Harpp, and K. Koda, Quantitative 1H NMR analysis of alkaline polysulfide solutions, Holzforschung, 59(2005), No. 2, p. 124. doi: 10.1515/HF.2005.019
|
[57] |
W.E. Kleinjan, A. de Keizer, and A.J.H. Janssen, Kinetics of the chemical oxidation of polysulfide anions in aqueous solution, Water Res., 39(2005), No. 17, p. 4093. doi: 10.1016/j.watres.2005.08.006
|
[58] |
S.W. Dhawale, Thiosufate: An interesting sulfur oxoanion that is useful in both medicine and industry-but is implicated in corrosion, J. Chem. Educ., 70(1993), No. 1, p. 12. doi: 10.1021/ed070p12
|
[59] |
M.G. Aylmore and D.M. Muir, Thiosulfate leaching of gold—A review, Miner. Eng., 14(2001), No. 2, p. 135. doi: 10.1016/S0892-6875(00)00172-2
|
[60] |
W.A. Pryor, The kinetics of disproportionation of sodium thiosulfate to sodium sulfide and sulfate, J. Am. Chem. Soc., 82(1960), No. 18, p. 4794. doi: 10.1021/ja01503a010
|
[61] |
X.B. Xu and S.G. Chang, Study of the disproportionation of sodium thiosulfate by x-ray photoelectron spectroscopy, [in] Modern High Temperature Science, Humana Press, 1984, p. 165.
|
[62] |
P.L. Breuer and M.I. Jeffery, The reduction of copper(II) and the oxidation of thiosulfate and oxysulfur anions in gold leaching solutions, Hydrometallurgy, 70(2003), No. 1-3, p. 163. doi: 10.1016/S0304-386X(03)00078-1
|
[63] |
G. Senanayake, The role of ligands and oxidants in thiosulfate leaching of gold, Gold Bull., 38(2005), No. 4, p. 170. doi: 10.1007/BF03215257
|
[64] |
O. Sitando, G. Senanayake, X. Dai, A.N. Nikoloski, and P. Breuer, A review of factors affecting gold leaching in non-ammoniacal thiosulfate solutions including degradation and, in-situ generation of thiosulfate, Hydrometallurgy, 178(2018), p. 151. doi: 10.1016/j.hydromet.2018.02.016
|
[65] |
H.G. Zhang and M.I. Jeffrey, A kinetic study of rearrangement and degradation reactions of tetrathionate and trithionate in near-neutral solutions, Inorg. Chem., 49(2010), No. 22, p. 10273. doi: 10.1021/ic9023025
|
[66] |
D. Varga and A.K. Horváth, Kinetics and mechanism of the decomposition of tetrathionate ion in alkaline medium, Inorg. Chem., 46(2007), No. 18, p. 7654. doi: 10.1021/ic700992u
|
[67] |
H.G. Zhang and D.B. Dreisinger, The kinetics for the decomposition of tetrathionate in alkaline solutions, Hydrometallurgy, 66(2002), No. 1-3, p. 59. doi: 10.1016/S0304-386X(02)00078-6
|
[68] |
Y. Choi, P. Kondos, M.G. Aylmore, J. Mcmullen, and G. Van Weert, Thiosulfate Generation in Situ in Precious Metal Recovery, U.S. Patent, Appl. 7572317, 2009.
|
[69] |
J. Ji, C.A. Fleming, P.G. West-Sells, and R.P. Hackl, A novel thiosulphate system for leaching gold without the use of copper and ammonia, [in] Hydrometallurgy 2003: 5th International Symposium Honoring Professor Ian M. Ritchie, Vancouver, 2003, p. 227.
|
[70] |
C.W. Pan, Y. Liu, A.K. Horváth, Z. Wang, Y. Hu, C. Ji, Y.M. Zhao, and Q.Y. Gao, Kinetics and mechanism of the alkaline decomposition of hexathionate ion, J. Phys. Chem. A, 117(2013), No. 14, p. 2924. doi: 10.1021/jp400339u
|
[71] |
Y. Zia, S. Mohammadnejad, and M. Abdollahy, Gold passivation by sulfur species: A molecular picture, Miner. Eng., 134(2019), p. 215. doi: 10.1016/j.mineng.2019.02.009
|
[72] |
M.I. Jeffrey and C.G. Anderson, A fundamental study of the alkaline sulfide leaching of gold, Eur. J. Miner. Process. Environ. Prot., 3(2003), No. 3, p. 336.
|
[73] |
C.G. Anderson, Alkaline sulfide gold leaching kinetics, Miner. Eng., 92(2016), p. 248. doi: 10.1016/j.mineng.2016.01.009
|
[74] |
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, 1974.
|
[75] |
M.G. Aylmore and D.M. Muir, Thermodynamic analysis of gold leaching by ammoniacal thiosulfate using Eh/pH and speciation diagrams, Min. Metall. Explor., 18(2001), No. 4, p. 221.
|
[76] |
A. Birich, S. Stopic, and B. Friedrich, Kinetic investigation and dissolution behavior of cyanide alternative gold leaching reagents, Sci. Rep., 9(2019), art. No. 7191.
|
[77] |
G. Senanayake, Analysis of reaction kinetics, speciation and mechanism of gold leaching and thiosulfate oxidation by ammoniacal copper(II) solutions, Hydrometallurgy, 75(2004), No. 1-4, p. 55. doi: 10.1016/j.hydromet.2004.06.004
|
[78] |
S.C. Zhang, Oxidation of Refractory Gold Concentrates and Simultaneous Dissolution of Gold in Aerated Alkaline Solutions [Dissertation], Murdoch University, Perth, 2004, p. 228.
|
[79] |
Y.B. Yang, W. Gao, B. Xu, Q. Li, and T. Jiang, Study on oxygen pressure thiosulfate leaching of gold without the catalysis of copper and ammonia, Hydrometallurgy, 187(2019), p. 71. doi: 10.1016/j.hydromet.2019.05.006
|
[80] |
N.W. Yu and J. Zhang, The electrochemical study of leaching gold by LSSS method, Gold, 19(1998), No. 2, p. 34.
|
[81] |
G.K. Parker, K.M. Watling, G.A. Hope, and R. Woods, A SERS spectroelectrochemical investigation of the interaction of sulfide species with gold surfaces, Colloids Surf.,A, 318(2008), No. 1-3, p. 151. doi: 10.1016/j.colsurfa.2007.12.029
|
[82] |
H. Zhou, Y.S. Song, W.J. Li, and K. Song, Electrochemical behavior of gold and its associated minerals in alkaline thiourea solutions, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 737. doi: 10.1007/s12613-018-1621-8
|
[83] |
B.K. Kenzhaliyev, Z.D. Dosymbaeva, R.R. Iskhakova, and E.N. Suleimenov, Investigation into the use of electrochemical extraction to draw gold from refractory ores, Am. J. Appl. Sci., 12(2015), No. 11, p. 857. doi: 10.3844/ajassp.2015.857.864
|
[84] |
E. Martens, H. Prommer, X.W. Dai, M.Z. Wu, J. Sun, P. Breuer, and A. Fourie, Feasibility of electrokinetic in situ leaching of gold, Hydrometallurgy, 175(2018), p. 70. doi: 10.1016/j.hydromet.2017.10.020
|
[85] |
R.K. Nadirov, L.I. Syzdykova, and A.K. Zhussupova, Electrochemical recovery of gold from concentrate by using sulfur–graphite electrode as the leaching agent source, J. Chem. Technol. Metall., 53(2018), No. 3, p. 556.
|
[86] |
P.L. Breuer and M.I. Jeffrey, An electrochemical study of gold leaching in thiosulfate solutions containing copper and ammonia, Hydrometallurgy, 65(2002), No. 2-3, p. 145. doi: 10.1016/S0304-386X(02)00086-5
|
[87] |
S.C. Zhang and M.J. Nicol, An electrochemical study of the dissolution of gold in thiosulfate solutions. Part II. Effect of Copper, J. Appl. Electrochem., 35(2005), No. 3, p. 339. doi: 10.1007/s10800-004-7469-9
|
[88] |
S.C. Zhang and M.J. Nicol, An electrochemical study of the dissolution of gold in thiosulfate solutions Part I: Alkaline solutions, J. Appl. Electrochem., 33(2003), No. 9, p. 767. doi: 10.1023/A:1025502303122
|
[89] |
E.A. Oraby, R.E. Browner, and H.R. Nikraz, Effect of silver in thiosulfate leaching of gold–silver alloys in the presence of copper and ammonia relative to pure gold and silver, Miner. Process. Extr. Metall. Rev., 35(2014), No. 2, p. 136. doi: 10.1080/08827508.2012.725684
|
[90] |
G. Senanayake, Gold leaching by thiosulphate solutions: A critical review on copper(II)–thiosulphate–oxygen interactions, Miner. Eng., 18(2005), No. 10, p. 995. doi: 10.1016/j.mineng.2005.01.006
|
[91] |
X.M. Zhang and G. Senanayake, A review of ammoniacal thiosulfate leaching of gold: An update useful for further research in non-cyanide gold lixiviants, Miner. Process. Extr. Metall. Rev., 37(2016), No. 6, p. 385. doi: 10.1080/08827508.2016.1218872
|
[92] |
M.I. Jeffrey, J. Zheng, and I.M. Ritchie, The development of a rotating electrochemical quartz crystal microbalance for the study of leaching and deposition of metals, Meas. Sci. Technol., 11(2000), No. 5, p. 560. doi: 10.1088/0957-0233/11/5/317
|
[93] |
S. Joshi and E. Asselin, Kinetics of gold leaching in alkaline sulfide solutions, [in] Proceedings of the 50th Annual Conference of Metallurgists of CIM, Montreal, 2011, p. 341.
|
[94] |
P.L. Breuer and M.I. Jeffrey, Thiosulfate leaching kinetics of gold in the presence of copper and ammonia, Miner. Eng., 13(2000), No. 10-11, p. 1071. doi: 10.1016/S0892-6875(00)00091-1
|
[95] |
M.I. Jeffrey, Kinetic aspects of gold and silver leaching in ammonia–thiosulfate solutions, Hydrometallurgy, 60(2001), No. 1, p. 7. doi: 10.1016/S0304-386X(00)00151-1
|
[96] |
A.G. Zelinsky and O.N. Novgorodtseva, EQCM study of the dissolution of gold in thiosulfate solutions, Hydrometallurgy, 138(2013), p. 79. doi: 10.1016/j.hydromet.2013.06.012
|
[97] |
A. Porvali, L. Rintala, J. Aromaa, T. Kaartinen, O. Forsen, and M. Lundstrom, Thiosulfate–copper–ammonia leaching of pure gold and pressure oxidized concentrate, Physicochem. Probl. Miner. Process., 53(2017), No. 2, p. 1079.
|
[98] |
E.S.A. Oraby and M.I. Jeffrey, An electrochemical study of the dissolution of pure gold and gold-silver alloys in thiosulfate leach solutions, ECS Trans., 28(2010), No. 6, p. 237.
|
[99] |
O. Sitando, X. Dai, G. Senanayake, and A.N. Nikoloski, Gold dissolution in non-ammoniacal thiosulphate solutions: Comparison of fundamentals and leaching studies, [in] World Gold Conference 2015, Johannesburg, 2015, p. 1.
|
[100] |
A.P. Chandra and A.R. Gerson, The mechanisms of pyrite oxidation and leaching: A fundamental perspective, Surf. Sci. Rep., 65(2010), No. 9, p. 293. doi: 10.1016/j.surfrep.2010.08.003
|
[101] |
Y.Y. Huai, C. Plackowski, and Y.J. Peng, The surface properties of pyrite coupled with gold in the presence of oxygen, Miner. Eng., 111(2017), p. 131. doi: 10.1016/j.mineng.2017.06.013
|
[102] |
H.P. Wang, A review on process-related characteristics of pyrrhotite, Miner. Process. Extr. Metall. Rev., 29(2008), No. 1, p. 1.
|
[103] |
Z.H. Fang, Z.J. Li, W. Shi, and B.L. Han, Gold leaching of a residue containing elemental sulfur with lime added under pressurized oxygen, Chin. J. Process Eng., 2(2002), No. 1, p. 17.
|
[104] |
M. Melashvili, C. Fleming, I. Dymov, D. Matthews, and D. Dreisinger, Dissolution of gold during pyrite oxidation reaction, Miner. Eng., 87(2016), p. 2. doi: 10.1016/j.mineng.2015.07.017
|
[105] |
M. Melashvili, C. Fleming, I. Dymov, D. Matthews, and D. Dreisinger, Equation for thiosulphate yield during pyrite oxidation, Miner. Eng., 74(2015), p. 105. doi: 10.1016/j.mineng.2015.02.004
|
[106] |
B. Xu, K. Li, Q. Zhong, Q. Li, Y.B. Yang, and T. Jiang, Study on the oxygen pressure alkaline leaching of gold with generated thiosulfate from sulfur oxidation, Hydrometallurgy, 177(2018), p. 178. doi: 10.1016/j.hydromet.2018.03.006
|
[107] |
X.L. Zhang, C.B. Sun, Y. Xing, J. Kou, and M. Su, Thermal decomposition behavior of pyrite in a microwave field and feasibility of gold leaching with generated elemental sulfur from the decomposition of gold-bearing sulfides, Hydrometallurgy, 180(2018), p. 210. doi: 10.1016/j.hydromet.2018.07.012
|
[108] |
M. Benzaazoua, P. Marion, F. Robaut, and A. Pinto, Gold-bearing arsenopyrite and pyrite in refractory ores: Analytical refinements and new understanding of gold mineralogy, Mineral. Mag., 71(2007), No. 2, p. 123. doi: 10.1180/minmag.2007.071.2.123
|
[109] |
S.H. Zhang, Y.J. Zheng, P. Cao, C.H. Li, S.Z. Lai, and X.J. Wang, Process mineralogy characteristics of acid leaching residue produced in low-temperature roasting-acid leaching pretreatment process of refractory gold concentrates, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1132. doi: 10.1007/s12613-018-1664-x
|
[110] |
X. Dai and M.I. Jeffrey, The effect of sulfide minerals on the leaching of gold in aerated cyanide solutions, Hydrometallurgy, 82(2006), No. 3-4, p. 118. doi: 10.1016/j.hydromet.2006.03.005
|
[111] |
B. Xu, Y.B. Yang, Q. Li, T. Jiang, X. Zhang, and G .H. Li, Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive, Hydrometallurgy, 171(2017), p. 44. doi: 10.1016/j.hydromet.2017.04.006
|
[112] |
A.D. Bas, E. Ghali, and Y. Choi, A review on electrochemical dissolution and passivation of gold during cyanidation in presence of sulphides and oxides, Hydrometallurgy, 172(2017), p. 30. doi: 10.1016/j.hydromet.2017.06.021
|
[113] |
R. Kim and A. Ghahreman, The effect of ore mineralogy on the electrochemical gold dissolution behavior in various cyanide and oxygen concentrations; Effect of sulfidic ores containing heavy metals, Hydrometallurgy, 184(2019), p. 75. doi: 10.1016/j.hydromet.2018.12.022
|
[114] |
M.I. Jeffrey and P.L. Breuer, The cyanide leaching of gold in solutions containing sulfide, Miner. Eng., 13(2000), No. 10-11, p. 1097. doi: 10.1016/S0892-6875(00)00093-5
|
[115] |
A. Azizi, C.F. Petre, C. Olsen, and F. Larachi, Electrochemical behavior of gold cyanidation in the presence of a sulfide-rich industrial ore versus its major constitutive sulfide minerals, Hydrometallurgy, 101(2010), No. 3-4, p. 108. doi: 10.1016/j.hydromet.2009.12.004
|
[116] |
A. Briceno and S. Chander, Oxidation of hydrosulphide ions on gold Part I: A cyclic voltammetry study, J. Appl. Electrochem., 20(1990), No. 3, p. 506. doi: 10.1007/BF01076064
|
[117] |
R. Woods, D.C. Constable, and I.C. Hamilton, A rotating ring disc electrode study of the oxidation of sulfur(-II) species on gold and sulfide minerals, Int. J. Miner. Process., 27(1989), No. 3-4, p. 309. doi: 10.1016/0301-7516(89)90071-9
|
[118] |
I.C. Hamilton and R. Woods, An investigation of the deposition and reactions of sulphur on gold electrodes, J. Appl. Electrochem., 13(1983), No. 6, p. 783. doi: 10.1007/BF00615828
|
[119] |
D.G. Wierse, M.M. Lohrengel, and J.W. Schultze, Electrochemical properties of sulfur adsorbed on gold electrodes, J. Electroanal. Chem. Interfacial Electrochem., 92(1978), No. 2, p. 121. doi: 10.1016/S0022-0728(78)80173-9
|
[120] |
A.G. Zelinsky, RDE study of thiosulfate oxidation on gold, J. Electroanal. Chem., 735(2014), p. 111. doi: 10.1016/j.jelechem.2014.10.018
|
[121] |
K.A. Bagdasaryan, M.L. Episkoposyan, K.A. Ter-Arakelyan, and G.G. Babayan, The kinetics of the dissolution of gold and silver in sodium thiosulfate solutions, Sov. J. Non-ferrous Met., 376(1983), p. 64.
|
[122] |
K.A. Ter-Arakelyan, K.A. Bagdasaryan, A.G. Oganyan, R.T. Mkrtchyan, G.G. Babayan, On technological expediency of sodium thiosulphate usage for gold extraction from raw material, Izv. V.U.Z. Tsvetn. Metall., (1984), p. 72.
|
[123] |
J.Y. Chen, T. Deng, G.C. Zhu, and J. Zhao, Leaching and recovery of gold in thiosulfate based system—A research summary at ICM, Trans. Indian Inst. Met., 49(1996), No. 6, p. 841.
|
[124] |
M.I. Jeffrey, K. Watling, G.A. Hope, and R. Woods, Identification of surface species that inhibit and passivate thiosulfate leaching of gold, Miner. Eng., 21(2008), No. 6, p. 443. doi: 10.1016/j.mineng.2008.01.006
|
[125] |
A.M. Pedraza, I. Villegas, P.L. Freund, and B. Chornik, Electro-oxidation of thiosulphate ion on gold: Study by means of cyclic voltammetry and Auger electron spectroscopy, J. Electroanal. Chem. Interfacial Electrochem., 250(1988), No. 2, p. 443. doi: 10.1016/0022-0728(88)85183-0
|
[126] |
J.Y. Baron, J. Mirza, E.A. Nicol, S.R. Smith, J.J. Leitch, Y. Choi, and J. Lipkowski, SERS and electrochemical studies of the gold–electrolyte interface under thiosulfate based leaching conditions, Electrochim. Acta, 111(2013), p. 390. doi: 10.1016/j.electacta.2013.07.195
|
[127] |
K.M. Watling, G.A. Hope, M.I. Jeffrey, and R. Woods, Surface products on gold leached in ammoniacal copper(II) thiosulfate solution, ECS Trans., 2(2006), No. 3, p. 121.
|
[128] |
K.M. Watling, Spectroelectrochemical Studies of Surface Species in the Gold/Thiosulfate System [Dissertation], Griffith University, Queensland, 2007, p. 242.
|
[129] |
E.A. Nicol, J.Y. Baron, J. Mirza, J.J. Leitch, Y. Choi, and J. Lipkowski, Surface enhanced Raman spectroscopy studies of the passive layer formation in gold leaching from thiosulfate solutions in the presence of cupric ion, J. Solid State Electrochem., 18(2014), No. 5, p. 1469. doi: 10.1007/s10008-013-2320-z
|
[130] |
Y.H. Nie, Q. Yu, X.Z. Hu, F.T. Zi, and H. Yu, The effect of ammonia on the anodic process of gold in copper-free thiosulfate solution, J. Electrochem. Soc., 163(2016), No. 5, p. 123. doi: 10.1149/2.0441605jes
|
[131] |
S.R. Smith, J.J. Leitch, C.Q. Zhou, J. Mirza, S.B. Li, X.D. Tian, Y.F. Huang, Z.Q. Tian, J.Y. Baron, Y. Choi, and J. Lipkowski, Quantitative SHINERS analysis of temporal changes in the passive layer at a gold electrode surface in a thiosulfate solution, Anal. Chem., 87(2015), No. 7, p. 3791. doi: 10.1021/ac504433t
|
[132] |
J. Mirza, S.R. Smith, J.Y. Baron, Y. Choi, and J. Lipkowski, A SERS characterization of the stability of polythionates at the gold–electrolyte interface, Surf. Sci., 631(2015), p. 196. doi: 10.1016/j.susc.2014.05.019
|
[133] |
M.A. Huergo, L. Giovanetti, M.S. Moreno, C.M. Maier, F.G. Requejo, R.C. Salvarezza, and C. Vericat, New insight into the chemical nature of the plasmonic nanostructures synthesized by the reduction of Au(III) with sulfide species, Langmuir, 33(2017), No. 27, p. 6785. doi: 10.1021/acs.langmuir.7b01168
|
[134] |
P.G. Lustemberg, C. Vericat, G.A. Benitez, M.E. Vela, N. Tognalli, A. Fainstein, M.L. Martiarena, and R.C. Salvarezza, Spontaneously formed sulfur adlayers on gold in electrolyte solutions: Adsorbed sulfur or gold sulfide?, J. Phys. Chem. C, 112(2008), No. 30, p. 11394. doi: 10.1021/jp8029055
|
[135] |
R. Woods, G.A. Hope, K.M. Watling, and M.I. Jeffrey, A spectroelectrochemical study of surface species formed in the gold/thiosulfate system, J. Electrochem. Soc., 153(2006), No. 7, p. 105. doi: 10.1149/1.2195889
|
[136] |
Y. Mikhlin, M. Likhatski, Y. Tomashevich, A. Romanchenko, S. Erenburg, and S. Trubina, XAS and XPS examination of the Au–S nanostructures produced via the reduction of aqueous gold(III) by sulfide ions, J. Electron. Spectrosc. Relat. Phenom., 177(2010), No. 1, p. 24. doi: 10.1016/j.elspec.2009.12.007
|
[137] |
J.A. Rodriguez, J. Dvorak, T. Jirsak, G. Liu, J. Hrbek, Y. Aray, and C. González, Coverage effects and the nature of the metal–sulfur bond in S/Au (111): High-resolution photoemission and density-functional studies, J. Am. Chem. Soc., 125(2003), No. 1, p. 276. doi: 10.1021/ja021007e
|