Jun-jun Yan, Xue-fei Huang, and Wei-gang Huang, High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1244-1250. https://doi.org/10.1007/s12613-019-1961-z
Cite this article as:
Jun-jun Yan, Xue-fei Huang, and Wei-gang Huang, High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1244-1250. https://doi.org/10.1007/s12613-019-1961-z
Research Article

High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel

+ Author Affiliations
  • Corresponding author:

    Wei-gang Huang    E-mail: huangwg56@163.com

  • Received: 6 August 2019Revised: 29 October 2019Accepted: 1 November 2019Available online: 14 February 2020
  • To improve the oxidation properties of ferritic heat-resistant steels, an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed. We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000°C. The characteristics of the oxide layer were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law, with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000°C. The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000°C. However, at oxidation temperatures of 900 and 1000°C, the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy. These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance, which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.

  • loading
  • [1]
    D. B., S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, and W.S. Jung, High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel, Mater. Charact., 93(2014), p. 52. doi: 10.1016/j.matchar.2014.03.012
    [2]
    M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, and C. Lee, Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression, Mater. Charact., 123(2017), p. 207. doi: 10.1016/j.matchar.2016.11.038
    [3]
    E. Huttunen-Saarivirta, V.T. Kuokkala, and P. Pohjanne, Thermally grown oxide films and corrosion performance of ferritic stainless steels under simulated exhaust gas condensate conditions, Corros. Sci., 87(2014), p. 344. doi: 10.1016/j.corsci.2014.06.041
    [4]
    P.D. Jablonski and D.E. Alman, Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications, J. Power Sources, 180(2008), No. 1, p. 433. doi: 10.1016/j.jpowsour.2008.02.010
    [5]
    D. Rojas, J. Garcia, O. Prat, G. Sauthoff, and A.R. Kaysser-Pyzalla, 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650°C, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5164. doi: 10.1016/j.msea.2011.03.037
    [6]
    L. Tan, X. Ren and T.R. Allen, Corrosion behavior of 9‒12% Cr ferritic‒martensitic steels in supercritical water, Corros. Sci., 52(2010), No. 4, p. 1520. doi: 10.1016/j.corsci.2009.12.032
    [7]
    X.S. Zhou, Y.C. Liu, C.X. Liu, and B.Q. Ning, Evolution of creep damage in a modified ferritic heat resistant steel with excellent short-term creep performance and its oxide layer characteristic, Mater. Sci. Eng. A, 608(2014), p. 46. doi: 10.1016/j.msea.2014.04.075
    [8]
    Y.P. Zeng, J.D. Jia, W.H. Cai, S.Q. Dong, and Z.C. Wang, Effect of long-term service on the precipitates in P92 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 913. doi: 10.1007/s12613-018-1640-5
    [9]
    C. Zhang, L. Cui, Y.C. Liu, C.X. Liu, and H.J. Li, Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel, J. Mater. Sci. Technol., 34(2018), No. 5, p. 756. doi: 10.1016/j.jmst.2017.11.049
    [10]
    X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review, J. Mater. Sci. Technol., 31(2015), No. 3, p. 235. doi: 10.1016/j.jmst.2014.12.001
    [11]
    M.H. Jang, J. Moon, J.Y. Kang, H.Y. Ha, B.G. Choi, T.H. Lee, and C. Lee, Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels, Mater. Sci. Eng. A, 647(2015), p. 163. doi: 10.1016/j.msea.2015.09.018
    [12]
    J. Ren, L.M. Yu, Y.C. Liu, Z.Q. Ma, C.X. Liu, H.J. Li, and J.F. Wu, Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600°C, Appl. Surf. Sci., 480(2019), p. 969. doi: 10.1016/j.apsusc.2019.03.019
    [13]
    D.N. Zou, Y.Q. Zhou, X. Zhang, W. Zhang, and Y. Han, High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel, Mater. Charact., 136(2018), p. 435. doi: 10.1016/j.matchar.2017.11.038
    [14]
    Y.L. Xu, X. Zhang, L.J. Fan, J. Li, X.J. Yu, X.S. Xiao, and L.Z. Jiang, Improved oxidation resistance of 15 wt.% Cr ferritic stainless steels containing 0.08−2.45wt.% Al at 1000°C in air, Corros. Sci., 100(2015), p. 311. doi: 10.1016/j.corsci.2015.08.007
    [15]
    J. Brnic, G. Turkal, S. Krscanski, D. Lanc, M. Canadija, and M. Brcic, Information relevant for the design of structure: Ferritic–Heat resistant high chromium steel X10CrAlSi25, Mater. Des., 63(2014), p. 508. doi: 10.1016/j.matdes.2014.06.051
    [16]
    C.Z. Lu, J.Y. Li, and Z. Fang, Effects of asymmetric rolling process on ridging resistance of ultra-purified 17%Cr ferritic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 216. doi: 10.1007/s12613-018-1564-0
    [17]
    H. Fujikawa and S.B. Newcomb, High temperature oxidation behaviour of high al content ferritic and austenitic stainless steels with and without rare-earth element addition, Oxid. Met., 77(2012), No. 1-2, p. 85. doi: 10.1007/s11085-011-9274-2
    [18]
    L.L. Wei, L.Q. Chen, M.Y. Ma, H.L. Liu, and R.D.K. Misra, Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5vol.% water vapor, Mater. Chem. Phys., 205(2018), p. 508. doi: 10.1016/j.matchemphys.2017.11.051
    [19]
    G.R. Holcomb and D.E. Alman, The effect of manganese additions on the reactive evaporation of chromium in Ni−Cr alloys, Scripta Mater., 54(2006), No. 10, p. 1821. doi: 10.1016/j.scriptamat.2006.01.026
    [20]
    J. Zurek, D.J. Yong, E. Essuman, M. Hänsel, H.J. Penkalla, L. Niewolak, and W.J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases, Mater. Sci. Eng. A, 477(2008), No. 1-2, p. 259. doi: 10.1016/j.msea.2007.05.035
    [21]
    T.B. Gu, C.G. Yin, W.C. Ma, and G.Y. Chen, Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation, Appl. Energy, 247(2019), p. 127. doi: 10.1016/j.apenergy.2019.04.014
    [22]
    Y. Li, X.G. Zhao, Y.B. Li, and X.Y. Li, Waste incineration industry and development policies in China, Waste Manage., 46(2015), p. 234. doi: 10.1016/j.wasman.2015.08.008
    [23]
    D. Mudgal, L. Ahuja, S. Singh, and S. Prakash, Corrosion behaviour of Cr3C2‒NiCr coated superalloys under actual medical waste incinerator, Surf. Coat. Technol., 325(2017), p. 145. doi: 10.1016/j.surfcoat.2017.06.050
    [24]
    S. Swaminathan, Y.S. Lee, and D. Kim, Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects, J. Power Sources, 327(2016), p. 104. doi: 10.1016/j.jpowsour.2016.07.044
    [25]
    H. Ebrahimifar and M. Zandrahimi, Mn coating on AISI 430 ferritic stainless steel by pack cementation method for SOFC interconnect applications, Solid State Ionics, 183(2011), No. 1, p. 71. doi: 10.1016/j.ssi.2010.12.017
    [26]
    D. Mudgal, L. Ahuja, D. Bhatia, S. Singh, and S. Prakash, High temperature corrosion behaviour of superalloys under actual waste incinerator environment, Eng. Fail. Anal., 63(2016), p. 160. doi: 10.1016/j.engfailanal.2016.02.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(1623) PDF Downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return