Cite this article as: |
Shun Wu, Xiao-bo He, Li-jun Wang, and Kuo-Chih Chou, High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1157-1163. https://doi.org/10.1007/s12613-020-1965-8 |
Li-jun Wang E-mail: lijunwang@ustb.edu.cn
Rutile titania (TiO2) was successfully prepared via hydrolysis of TiCl4 in the presence of AlCl3. The powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Brunauer−Emmett−Teller (BET) surface area analysis. In the present system, AlCl3 functions as a nucleating agent and induces the formation of rutile TiO2. The influences of HCl and isopropanol concentrations on the purity and morphology of the rutile TiO2 were investigated. The purity of the rutile TiO2 increased with increasing concentration of HCl. Evenly dispersed rutile TiO2 particles with a spherical morphology were obtained when the HCl and isopropanol concentrations were 0.5 and 1 mol·L−l, respectively. Furthermore, the prepared TiO2 powders were used in adsorption tests of the heavy metal pollutant Cr(VI). Rutile TiO2 sample S-9 demonstrated greater adsorption performance and a removal efficiency that was greater than 99.95% after 60 min of adsorption when the Cr(VI) concentration was 200 mg·L−l. The maximum adsorption capacity on rutile TiO2 was 28.9 mg·g−1. This work provides an easy path to prepare a high-performance rutile TiO2 adsorbent with potential applications in water pollution treatment.
[1] |
R. Leary and A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49(2011), No. 3, p. 741. doi: 10.1016/j.carbon.2010.10.010
|
[2] |
J. Matos, J.M. Chovelon, T. Cordero, and C. Ferronato, Influence of surface properties of activated carbon on photocatalytic activity of TiO2 in 4-chlorophenol degradation, Open Environ. Eng. J., 2(2009), No. 1, p. 21. doi: 10.2174/1874829500902010021
|
[3] |
D.L. Jiang, S.Q. Zhang, and H.J. Zhao, Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases, Environ. Sci. Technol., 41(2007), No. 1, p. 303. doi: 10.1021/es061509i
|
[4] |
B. O'Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(1991), No. 6346, p. 737. doi: 10.1038/353737a0
|
[5] |
I.K. Konstantinou and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B, 49(2004), No. 1, p. 1. doi: 10.1016/j.apcatb.2003.11.010
|
[6] |
Y.S. Hu, L. Kienle, Y.G. Guo, and J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2, Adv. Mater., 18(2006), No. 11, p. 1421. doi: 10.1002/adma.200502723
|
[7] |
J.S. Chen and X.W. Lou, The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles, J. Power Sources, 195(2010), No. 9, p. 2905. doi: 10.1016/j.jpowsour.2009.11.040
|
[8] |
K.M. Kutláková, J. Tokarský, P. Kovář, S. Vojtěšková, A. Kovářová, B. Smetana, J. Kukutschová, P. Čapková, and V. Matějka, Preparation and characterization of photoactive composite kaolinite/TiO2, J. Hazard. Mater., 188(2011), No. 1-3, p. 212. doi: 10.1016/j.jhazmat.2011.01.106
|
[9] |
D.A. Hanaor and C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46(2011), No. 4, p. 855. doi: 10.1007/s10853-010-5113-0
|
[10] |
M. He, L. Yu, X.H. Lu, and X. Feng, Large-scale hydrothermal synthesis of twinned rutile titania, J. Am. Ceram. Soc., 90(2007), No. 1, p. 319. doi: 10.1111/j.1551-2916.2006.01404.x
|
[11] |
D. Gumy, C. Morais, P. Bowen, C. Pulgarin, S. Giraldo, R. Hajdu, and J. Kiwi, Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point, Appl. Catal. B, 63(2006), No. 1-2, p. 76. doi: 10.1016/j.apcatb.2005.09.013
|
[12] |
H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7(1995), No. 4, p. 663. doi: 10.1021/cm00052a010
|
[13] |
R. Kullaiah, L.J. Elias, and A.C. Hegde, Effect of TiO2 nanoparticles on hyddrogen evolution reaction activity of Ni coatings, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 472. doi: 10.1007/s12613-018-1593-8
|
[14] |
L.Y. Shi, C.Z. Li, and D.Y. Fang, Research progress in preparation of cajuelite titania powders by chlorination process, Chem. Prod. Technol., 4(1997), p. 1.
|
[15] |
S.F. Yang, Y.H. Liu, Y.P. Guo, J.Z. Zhao, H.F. Xu, and Z.C. Wang, Preparation of rutile titania nanocrystals by liquid method at room temperature, Mater. Chem. Phys., 77(2003), No. 2, p. 501. doi: 10.1016/S0254-0584(02)00117-7
|
[16] |
R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetices for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73. doi: 10.1007/s12613-018-1548-0
|
[17] |
J. Huang, R.X. Li, L. Tian, X.H. Yu, Y.Q. Hou, and W. Li, Research progress of oxidation mechanism in the chloride process for titanium dioxide production, Chem. Ind. Eng. Prog., 37(2018), No. 3, p. 1054.
|
[18] |
Y.R. Liu, J.L. Zhang, Z.J. Liu, and X.D. Xing, Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 760. doi: 10.1007/s12613-016-1290-4
|
[19] |
W.J. Zheng, X.D. Liu, Z.Y. Yan, and L.J. Zhu, Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4, ACS Nano, 3(2009), No. 1, p. 115. doi: 10.1021/nn800713w
|
[20] |
Q.H. Zhang, L. Gao, and J.K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal. B, 26(2000), No. 3, p. 207. doi: 10.1016/S0926-3373(00)00122-3
|
[21] |
Q.H. Zhang, L. Gao, and J.K. Guo, Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution, Nanostruct. Mater., 11(1999), No. 8, p. 1293. doi: 10.1016/S0965-9773(99)00421-3
|
[22] |
C.S. Fang and Y.W. Chen, Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, Mater. Chem. Phys., 78(2003), No. 3, p. 739. doi: 10.1016/S0254-0584(02)00416-9
|
[23] |
V. Moghimifar, A. Raisi, A. Aroujalian, and N.B. Bandpey, Preparation of nano crystalline titanium dioxide by microwave hydrothermal method, Adv. Mater. Res., 829(2014), p. 846.
|
[24] |
L.M. Zhou, X.Z. Liang, and J.Q. Cai, Preparation of the shape-controlled rutile nano-TiO2 by low temperature hydrothermal method, Chin. J. Mater. Res., 24(2010), No. 2, p. 208.
|
[25] |
H.H. Qian, Y. Hu, Y. Liu, M.J. Zhou, and C.F. Guo, Electrostatic self-assembly of TiO2 nanoparticles onto carbon spheres with enhanced adsorption capability for Cr(VI), Mater. Lett., 68(2012), p. 174. doi: 10.1016/j.matlet.2011.10.054
|
[26] |
H. Tel, Y. Altaş, and M.S. Taner, Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide, J. Hazard. Mater., 112(2004), No. 3, p. 225. doi: 10.1016/j.jhazmat.2004.05.025
|
[27] |
Z.P. Chen, Y. Li, M. Guo, F.Y. Xu, P. Wang, Y. Du, and P. Na, One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III), J. Hazard. Mater., 310(2016), p. 188. doi: 10.1016/j.jhazmat.2016.02.034
|
[28] |
L. Zhang and Y.G. Zhang, Adsorption characteristics of hexavalent chromium on HCB/TiO2, Appl. Surf. Sci., 316(2014), p. 649. doi: 10.1016/j.apsusc.2014.08.045
|
[29] |
S.S. Liu, Y.Z. Chen, L.D. Zhang, G.M. Hua, W. Xu, N. Li, and Y. Zhang, Enhanced removal of trace Cr (VI) ions from aqueous solution by titanium oxide–Ag composite adsorbents, J. Hazard. Mater., 190(2011), No. 1-3, p. 723. doi: 10.1016/j.jhazmat.2011.03.114
|
[30] |
S.Y. Liu, L.J. Wang, and K.C. Chou, A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis, Ind. Eng. Chem. Res., 55(2016), No. 50, p. 12962. doi: 10.1021/acs.iecr.6b03682
|
[31] |
R. Li, Controlled Formation and Charaterization of Titania Microspheres [Dissertation], Uiversity of Jinan, Jinan, 2011.
|
[32] |
Y.Y. Shi, Y.Y. Zhou, L.F. Gong, and Y.Z. Chen, Research on technological conditions of removing aluminum chloride by crude titanium tetrachloride hydrolysis and settling, Titanium Ind. Prog., 30(2013), No. 4, p. 36.
|
[33] |
Z.L. Huang, Analysis of pre-hydrolysis and still bottom hydrolysis during purifying TiCl4, Titanium Ind. Prog., 28(2011), No. 5, p. 38.
|
[34] |
S.B. Baronov, S.S. Berdonosov, Y.V. Baronova, and I.V. Melikhov, Radiochemical diagnostics of thermal hydrolysis of aluminum trichloride, Radiochemistry, 46(2004), No. 5, p. 490. doi: 10.1007/s11137-005-0017-6
|
[35] |
M.B. Hay and S.C.B. Myneni, Geometric and electronic structure of the aqueous Al(H2O)
|
[36] |
Z.R. Wei, M.X. Wu, L.M. Zhang, X.H. Liu, Y. Zhou, and G.Y. Dong, Effects of Fe3+ on morphology of rutile TiO2 crystal synthesized by hydrothermal process, J. Synth. Cryst., 39(2010), No. Supplement, p. 269.
|
[37] |
K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57(1985), No. 4, p. 603. doi: 10.1351/pac198557040603
|
[38] |
S. Asuha, X.G. Zhou, and S. Zhao, Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method, J. Hazard. Mater., 181(2010), No. 1-3, p. 204. doi: 10.1016/j.jhazmat.2010.04.117
|
[39] |
D.Y. Zhang, Synthesis of High Surface area TiO2 Nanoparticles and Their Adsorptive Properties [Dissertation], Inner Mongolia Normal University, Hohhot, 2014.
|