Jin-xiong Hou, Jing Fan, Hui-jun Yang, Zhong Wang, and Jun-wei Qiao, Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp.1363-1370. https://dx.doi.org/10.1007/s12613-020-1967-6
Cite this article as: Jin-xiong Hou, Jing Fan, Hui-jun Yang, Zhong Wang, and Jun-wei Qiao, Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp.1363-1370. https://dx.doi.org/10.1007/s12613-020-1967-6
Research Article

Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys

Author Affilications
Funds: Jun-wei Qiao would like to acknowledge the financial support from National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering (No. 61420050204) and the Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi, China (No. 2019BY044), and Jin-xiong Hou would like to acknowledge the financial support from the Graduate Science and Technology Innovation Fund Project of Shanxi, China (No. 2019BY044)
  • Author Bio:

    Jin-xiong Hou: houginxiong@hotmail.com

  • Corresponding author:

    Jun-wei Qiao E-mail: qiaojunwei@gmail.com

  • Using thermochemical treatments, boronized layers were successfully prepared on Al0.25CoCrFeNi high-entropy alloys (HEAs). The thickness of the boronized layers ranged widely from 20 to 50 μm, depending on the heat treatment time. Boronizing remarkably improved the surface hardness from HV 188 to HV 1265 after treating at 900°C for 9 h. Moreover, boronizing enhanced the yield strength of HEAs from 195 to 265 MPa but deteriorated the tensile ductility. Multiple crackings in the boride layers significantly decreased the plasticity. The insufficient work-hardening capacity essentially facilitated the plastic instability of the boronized HEAs. With decreasing substrate thickness, the fracture modes gradually transformed from dimples to quasi-cleavage and eventually to cleavage.

  • J.W. Yeh, S.K. Chen, S.J. Jin, J.Y. Gan, T.S. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloy with multiple principal element: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. DOI: 10.1002/adem.200300567
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. DOI: 10.1016/j.msea.2003.10.257
    Y. Zhang, J.W. Qiao, and P.K. Liaw, A brief review of high entropy alloys and serration behavior and flow units, J. Iron Steel Res. Int., 23(2016), No. 1, p. 2. DOI: 10.1016/S1006-706X(16)30002-4
    D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. DOI: 10.1016/j.actamat.2016.08.081
    M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer, Cham, 2016.
    L.J. Zhang, Z.K. Jiang, M.D. Zhang, J.T. Fan, D.J. Liu, P.F. Yu, G. Li, and R.P. Liu, Effect of solid carburization on the surface microstructure and mechanical properties of the equiatomic CoCrFeNi high-entropy alloy, J. Alloys Compd., 769(2018), p. 27. DOI: 10.1016/j.jallcom.2018.07.329
    A. Nishimoto, T. Fukube, and T. Maruyama, Microstructural, mechanical, and corrosion properties of plasma-nitrided CoCrFeMnNi high-entropy alloys, Surf. Coat. Technol., 376(2019), p. 52. DOI: 10.1016/j.surfcoat.2018.06.088
    Z.H. Xia, M. Zhang, Y. Zhang, Y. Zhao, P.K. Liaw, and J.W. Qiao, Effects of Ni–P amorphous films on mechanical and corrosion properties of Al0.3CoCrFeNi high-entropy alloys, Intermetallics, 94(2018), p. 65. DOI: 10.1016/j.intermet.2017.12.021
    J.X. Hou, M. Zhang, H.J. Yang, J.W. Qiao, and Y.C. Wu, Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing, Mater. Lett., 238(2019), p. 258. DOI: 10.1016/j.matlet.2018.12.029
    B.B. Straumal, A.S. Gornakova, O.A. Kogtenkova, S.G. Protasova, V.G. Sursaeva, and B. Baretzky, Continuous and discontinuous grain-boundary wetting in ZnxAl1−x, Phys. Rev. B:Condens. Matter., 78(2008), No. 5, art. No. 054204. DOI: 10.1103/PhysRevB.78.054204
    C. Meriç, S. Sahin, and S.S. Yilmaz, Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances, Mater. Res. Bull., 35(2000), No. 13, p. 2165. DOI: 10.1016/S0025-5408(00)00427-X
    H.J. Hunger and G. Trute, Boronizing to produce wear-resistant surface layers, Heat Treat. Met., 21(1994), No. 2, p. 31.
    Y. Soydan, S. Köksal, A. Demirer and V. Çelik, Sliding friction.and wear behavior of pack-boronized AISI 1050. 4140, and 8620 steels, Tribol. Trans., 51(2008), No. 1, p. 74. DOI: 10.1080/10402000701739370
    T. Takasugi and O. Izumi, Surface strengthening in aluminium single crystals coated with evaporated films, Acta Metall., 24(1976), No. 12, p. 1107. DOI: 10.1016/0001-6160(76)90027-4
    T. Takasugi and O. Izumi, Surface strengthening in aluminium single crystals coated with electro-deposited nickel film, Acta Metall., 23(1975), No. 9, p. 1111. DOI: 10.1016/0001-6160(75)90115-7
    J.X. Hou, M. Zhang, S.G. Ma, P.K. Liaw, Y. Zhang, and J.W. Qiao, Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling, Mater. Sci. Eng. A, 707(2017), p. 593. DOI: 10.1016/j.msea.2017.09.089
    Z.F. Zhang and J. Eckert, Unified tensile fracture criterion, Phys. Rev. Lett., 94(2005), No. 9, art. No. 094301. DOI: 10.1103/PhysRevLett.94.094301
    F. Ahmed, K. Bayerlein, S.M. Rosiwal, M. Göken, and K. Durst, Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-Raman spectroscopy and analytical modelling, Acta Mater., 59(2011), No. 14, p. 5422. DOI: 10.1016/j.actamat.2011.05.015
    S. Frank, U.A. Handge, S. Olliges, and R. Spolenak, The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis, Acta Mater., 57(2009), No. 5, p. 1442. DOI: 10.1016/j.actamat.2008.11.023
    T. Guo, Y.M. Chen, R.H. Cao, X.L. Pang, J.Y. He, and L.J. Qiao, Cleavage cracking of ductile-metal substrates induced by brittle coating fracture, Acta Mater., 152(2018), p. 77. DOI: 10.1016/j.actamat.2018.04.017
    Y. Leterrier, J. Waller, J.A.E. Månson, and J.A. Nairn, Models for saturation damage state and interfacial shear strengths in multilayer coatings, Mech. Mater., 42(2010), No. 3, p. 326. DOI: 10.1016/j.mechmat.2009.11.006
    T. Cramer, A. Wanner, and P. Gumbsch, Energy dissipation and path instabilities in dynamic fracture of silicon single crystals, Phys. Rev. Lett., 85(2000), No. 4, p. 788. DOI: 10.1103/PhysRevLett.85.788
    J.R. García, J.E. Fernández, J.M. Cuetos, and F.G. Costales, Fatigue effect of WC coatings thermal sprayed by HVOF and laser treated, on medium carbon steel, Eng. Fail. Anal., 18(2011), No. 7, p. 1750. DOI: 10.1016/j.engfailanal.2011.03.026
    L.B. Freund, Crack propagation in an elastic solid subjected to general loading—III. Stress wave loading, J. Mech. Phys. Solids, 21(1973), No. 2, p. 47. DOI: 10.1016/0022-5096(73)90029-X
    T. Guo, L.J. Qiao, X.L. Pang, and A.A. Volinsky, Brittle film-induced cracking of ductile substrates, Acta Mater., 99(2015), p. 273. DOI: 10.1016/j.actamat.2015.07.059
    A. Seeger, J. Diehl, S. Mader, and H. Rebstock, Work hardening and work softening of face centred cubic metal crystals, Philos. Mag., 2(1957), No. 15, p. 323. DOI: 10.1080/14786435708243823
    D.A. Hughes and N. Hansen, The microstructural origin of work hardening stages, Acta Mater., 148(2018), p. 374. DOI: 10.1016/j.actamat.2018.02.002
    S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, and P.K. Liaw, Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater. Res. Lett., 5(2017), No. 4, p. 276. DOI: 10.1080/21663831.2016.1257514
    I. Gutierrez-Urrutia and D. Raabe, Grain size effect on strain hardening in twinning-induced plasticity steels, Scripta Mater., 66(2012), No. 12, p. 992. DOI: 10.1016/j.scriptamat.2012.01.037
    A. Rohatgi, K.S. Vecchio, and G.T. Gray, The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: Deformation twinning. work hardening.and dynamic recovery, Metall. Mater. Trans. A, 32(2001), No. 1, p. 135. DOI: 10.1007/s11661-001-0109-7
    W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332. DOI: 10.1016/j.actamat.2016.06.063
    I. Baker, F.L. Meng, M. Wu, and A. Brandenberg, Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy, J. Alloys Compd., 656(2016), p. 458. DOI: 10.1016/j.jallcom.2015.09.264
  • Related Articles

    [1]Yang Li, Fang Lian, Ning Chen, Zhen-jia Hao, Kuo-chih Chou. Structural predictions based on the compositions of cathodic materials by first-principles calculations [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(5): 524-529. DOI: 10.1007/s12613-015-1102-2
    [2]Hong-yan Guan, Fang Lian, Yan Ren, Yan Wen, Xiao-rong Pan, Jia-lin Sun. Comparative study of different membranes as separators for rechargeable lithium-ion batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(6): 598-603. DOI: 10.1007/s12613-013-0772-x
    [3]Tao Li, Juan-yu Yang, Shi-gang Lu. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(8): 752-756. DOI: 10.1007/s12613-012-0623-1
    [4]Yan-bin Chen, Yang Hu, Fang Lian, Qing-guo Liu. Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4-zFz as cathode materials for lithium-ion batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 220-224. DOI: 10.1007/s12613-010-0217-8
    [5]Meng Chen, Wen-le Ao, Chang-song Dai, Tao Tao, Jun Yang. Synthesis and electrochemical properties of LiNi0.8Al0.2-xTixO2 cathode materials by an ultrasonic-assisted co-precipitation method [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 452-457. DOI: 10.1016/S1674-4799(09)60079-0
    [6]Ting-feng Yi, Yan-rong Zhu, Xin-guo Hu. Structure and electrochemical properties of LiLaxMn2-xO4 cathode material by the ultrasonic-assisted sol-gel method [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 119-123. DOI: 10.1016/S1674-4799(09)60020-0
    [7]Meng Chen, Shengjun Li, Chuang Yang. Structure and electrochemical properties of La, F dual-doped LiLa0.01Mn1.99O3.99F0.01 cathode materials [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(4): 468-473. DOI: 10.1016/S1005-8850(08)60088-2
    [8]Tingfeng Yi, Xinguo Hu, Dianlong Wang, Huibin Huo. Effects of Al,F dual substitutions on the structure and electrochemical properties of lithium manganese oxide [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(2): 182-186. DOI: 10.1016/S1005-8850(08)60035-3
    [9]Chuangang Lin, Weihua Qiu, Zhimin Li, Jialing Hong, Huanyu Hu, Zhongqin Lu. Comparative study of LiNiO2, LiNi0.8Co0.2O2 and LiNi0.75Al0.25O2 for lithium-ion batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(6): 448-452.
    [10]Chuangang Lin, Weihua Qiu, Qingguo Liu. Electrochemical Studies of Lithium Intercalation into Graphite Film Electrode for Li+-ion Batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(1): 48-50.
  • Cited by

    Periodical cited type(25)

    1. Qingqing Wu, Qiang Fu, Changhui Mu, et al. Unveiling the energy storage mechanism in zinc-doped Mn3O4 cathode for high-performance AZIBs. Journal of Alloys and Compounds, 2025, 1014: 178843. DOI:10.1016/j.jallcom.2025.178843
    2. Huiqin Zhu, Mingming Hou, Weiwei Qian, et al. The porous polysilane-coated NFM111 cathode prepared by in-situ polymerization of ethyl orthosilicate with improved rate and cycle stability for Na ion battery. Applied Surface Science, 2025, 692: 162716. DOI:10.1016/j.apsusc.2025.162716
    3. Mohammad H. Tahmasebi, Lituo Zheng, T. D. Hatchard, et al. Li[Ni0.6Mn0.2Co0.2]O2 Made From Crystalline Rock Salt Oxide Precursors. Journal of The Electrochemical Society, 2023, 170(3): 030531. DOI:10.1149/1945-7111/acc212
    4. Xingge Liu, Min Gao, Jingling Zhao, et al. New Insight into Effects of Higher Upper Cutoff Voltage on the Cycling Performance of Graphite‐SiOx/Li‐rich Layered Oxide Pouch‐Type Batteries. Energy Technology, 2022, 10(7) DOI:10.1002/ente.202200319
    5. Rui Wang, Lifan Wang, Yujie Fan, et al. Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 110: 120. DOI:10.1016/j.jiec.2022.03.036
    6. Xinru Tan, Maolin Zhang, Dongyan Zhang, et al. Inhibited intracrystalline cracks and enhanced electrochemical properties of NCM811 cathode materials coated by EPS. Ceramics International, 2021, 47(23): 32710. DOI:10.1016/j.ceramint.2021.08.167
    7. Meng-rong Wu, Ming-yue Gao, Shu-ya Zhang, et al. High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method. International Journal of Minerals, Metallurgy and Materials, 2021, 28(10): 1656. DOI:10.1007/s12613-021-2319-x
    8. Zhongliang Xiao, Chengfeng Zhou, Liubin Song, et al. Dual-modification of WO3-coating and Mg-doping on LiNi0.8Co0.1Mn0.1O2 cathodes for enhanced electrochemical performance at high voltage. Ionics, 2021, 27(5): 1909. DOI:10.1007/s11581-021-03997-z
    9. Shi Chen, Xikun Zhang, Maoting Xia, et al. Issues and challenges of layered lithium nickel cobalt manganese oxides for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 895: 115412. DOI:10.1016/j.jelechem.2021.115412
    10. Lu Liu, Xiaogang Yang, Jie Yang, et al. Modelling of turbulent shear controllable co-precipitation synthesis of lithium ion battery cathode precursor micro-particles in a Taylor-Couette flow reactor with variable configurations of inner cylinder. Chemical Engineering Journal, 2021, 411: 128571. DOI:10.1016/j.cej.2021.128571
    11. Jinliang Tao, Aining Mu, Shujun Geng, et al. Influences of direction and magnitude of Mg2+ doping concentration gradient on the performance of full concentration gradient cathode material. Journal of Solid State Electrochemistry, 2021, 25(7): 1959. DOI:10.1007/s10008-021-04984-0
    12. Hao-yang Wang, Xue Cheng, Xiao-feng Li, et al. Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode. International Journal of Minerals, Metallurgy and Materials, 2021, 28(2): 305. DOI:10.1007/s12613-020-2145-6
    13. Jihai Duan, Ruchao Zhang, Quanhong Zhu, et al. The Effect of Controlling Strategies of pH and Ammonia Concentration on Preparing Full Concentration Gradient Ni0.8Co0.1Mn0.1(OH)2 via Coprecipitation in a Pilot‐Scale Reactor. Energy Technology, 2020, 8(5) DOI:10.1002/ente.201901437
    14. Zhikun Zhao, Ziyue Wen, Chunli Li, et al. Effects of different charge cut-off voltages on the surface structure and electrochemical properties of LiNi0.6Co0.2Mn0.2O2. Electrochimica Acta, 2020, 353: 136518. DOI:10.1016/j.electacta.2020.136518
    15. Ruihan Zhang, Yadong Zheng, Zeyi Yao, et al. Systematic Study of Al Impurity for NCM622 Cathode Materials. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9875. DOI:10.1021/acssuschemeng.0c02965
    16. Yongjian Lai, Zhaojie Li, Wenxia Zhao, et al. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Research, 2020, 13(12): 3347. DOI:10.1007/s12274-020-3015-2
    17. Yingjie Zhang, Ting Ren, Jufeng Zhang, et al. The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2019, 805: 1288. DOI:10.1016/j.jallcom.2019.05.090
    18. Azhar Iqbal, Daocong Li. Systematic study of the effect of calcination temperature and Li/M molar ratio on high performance Ni-rich layered LiNi0.9Co0.1O2 cathode materials. Chemical Physics Letters, 2019, 720: 97. DOI:10.1016/j.cplett.2019.01.044
    19. Yongfu Cui, Kun Liu, Jianzong Man, et al. Preparation of ultra-stable Li[Ni0.6Co0.2Mn0.2]O2 cathode material with a continuous hydroxide co-precipitation method. Journal of Alloys and Compounds, 2019, 793: 77. DOI:10.1016/j.jallcom.2019.04.123
    20. Quanhong Zhu, Hang Xiao, Ruchao Zhang, et al. Effect of impeller type on preparing spherical and dense Ni1−−Co Mn (OH)2 precursor via continuous co-precipitation in pilot scale: A case of Ni0·6Co0·2Mn0·2(OH)2. Electrochimica Acta, 2019, 318: 1. DOI:10.1016/j.electacta.2019.06.008
    21. Fei Ma, Yinghong Wu, Guangye Wei, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. Journal of Solid State Electrochemistry, 2019, 23(7): 2213. DOI:10.1007/s10008-019-04308-3
    22. Guilong Liu, Minglu Li, Naiteng Wu, et al. Single-Crystalline Particles: An Effective Way to Ameliorate the Intragranular Cracking, Thermal Stability, and Capacity Fading of the LiNi0.6Co0.2Mn0.2O2 Electrodes. Journal of The Electrochemical Society, 2018, 165(13): A3040. DOI:10.1149/2.0491813jes
    23. Tian Xie, Fugen Sun, Xiaoqing Zhou, et al. Rheological phase method synthesis of carbon-coated LiNi0.6Co0.2Mn0.2O2 as the cathode material of high-performance lithium-ion batteries. Applied Physics A, 2018, 124(10) DOI:10.1007/s00339-018-2022-6
    24. Qiwen Ran, Hongyuan Zhao, Youzuo Hu, et al. Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochimica Acta, 2018, 289: 82. DOI:10.1016/j.electacta.2018.08.091
    25. Kwang Yoo, Yeon Kang, Kyoung Im, et al. Surface Modification of Li(Ni0.6Co0.2Mn0.2)O2 Cathode Materials by Nano-Al2O3 to Improve Electrochemical Performance in Lithium-Ion Batteries. Materials, 2017, 10(11): 1273. DOI:10.3390/ma10111273

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (2738) PDF downloads (100) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return