Xiao-qian Pan, Jian Yang, Joohyun Park, and Hideki Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1489-1498. https://doi.org/10.1007/s12613-020-1973-8
Cite this article as:
Xiao-qian Pan, Jian Yang, Joohyun Park, and Hideki Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1489-1498. https://doi.org/10.1007/s12613-020-1973-8
Research Article

Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method

+ Author Affiliations
  • Corresponding author:

    Jian Yang    E-mail: yang_jian@t.shu.edu.cn

  • Received: 28 September 2019Revised: 22 December 2019Accepted: 26 December 2019Available online: 8 January 2020
  • The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface. A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology, size, composition, quantity, and distribution of inclusions in the defect and non-defect zone of automobile exposed panel. The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10 μm. The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction, with a spacing of 3–7 mm, a length of 6–7 mm, and a width of about 3 mm. The inclusion area part is 0.04%–0.16% with an average value of 0.08%, the inclusion number density is 40 mm−2 and the inclusion average spacing is 25.13 μm. The inclusion spacing is approximately 40–160 μm, with an average value of 68.76 μm in chain-like inclusion parts. The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002% and 1–2 mm−2, respectively, with the inclusion spacing of 400 μm and the size of Al2O3 being 1–3 μm.

  • loading
  • [1]
    M. Wang and Y.P. Bao, Source and negative effects of macro-inclusions in titanium stabilized ultra low carbon interstitial free (Ti-IF) steel, Met. Mater. Int., 18(2012), No. 1, p. 29. doi: 10.1007/s12540-012-0004-3
    [2]
    Q.Y. Zhang, L.T. Wang, and X.H. Wang, Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs, ISIJ Int., 46(2006), No. 10, p. 1421. doi: 10.2355/isijinternational.46.1421
    [3]
    H. Esaka, Y. Kuroda, K. Shinozuka, and M. Tamura, Interaction between argon gas bubbles and solidified shell, ISIJ Int., 44(2004), No. 4, p. 682. doi: 10.2355/isijinternational.44.682
    [4]
    H. Yasunaka, R. Yamanka, T. Inoue, and T. Saito, Pinhole and inclusion defects formed at the subsurface in ultra low carbon steel, Tetsu-to-Hagané, 81(1995), No. 5, p. 529. doi: 10.2355/tetsutohagane1955.81.5_529
    [5]
    X.X. Deng, L.P. Li, X.H. Wang, Y.Q. Ji, C.X. Ji, and G.S. Zhu, Subsurface macro-inclusions and solidified hook character in aluminum-killed deep-drawing steel slabs, Int. J. Miner. Metall. Mater., 21(2014), No. 6, p. 531. doi: 10.1007/s12613-014-0939-0
    [6]
    H. Yamamura, Y. Mizukami, and K. Misawa, Formation of a solidified hook-like structure at the subsurface in ultra low carbon steel, ISIJ Int., 36(1996), No. Suppl, p. S223. doi: 10.2355/isijinternational.36.Suppl_S223
    [7]
    X.X. Deng, C.X. Ji, Y. Cui, Z.H. Tian, X. Yin, X.J. Shao, Y.D. Yang, and A. McLean, Formation and evolution of macro inclusions in IF steels during continuous casting, Ironmaking Steelmaking, 44(2017), No. 10, p. 739. doi: 10.1080/03019233.2017.1368958
    [8]
    J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim, A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs, Metall. Mater. Trans. A, 37(2006), No. 5, p. 1597. doi: 10.1007/s11661-006-0103-1
    [9]
    G.G. Lee, H.J. Shin, S.H. Kim, S.K. Kim, W.Y. Choi, and B.G. Thomas, Prediction and control of subsurface hooks in continuous cast ultra-low-carbon steel slabs, Ironmaking Steelmaking, 36(2009), No. 1, p. 39. doi: 10.1179/174328108X369071
    [10]
    M. Zeze, A. Tanaka, and R. Tsujino, Formation mechanism of sliver-type surface defect with oxide scale on sheet and coil, Tetsu-to-Hagané, 87(2001), No. 2, p. 85. doi: 10.2355/tetsutohagane1955.87.2_85
    [11]
    T. Miyake, M. Morishita, H. Nakata, and M. Kokita, Influence of sulphur content and molten steel flow on entrapment of bubbles to solid/liquid interface, ISIJ Int., 46(2006), No. 12, p. 1817. doi: 10.2355/isijinternational.46.1817
    [12]
    H.X. Yu, C.X. Ji, B. Chen, C. Wang, and Y.H. Zhang, Characteristics and evolution of inclusion induced surface defects of cold rolled IF sheet, J. Iron Steel Res. Int., 22(2015), No. Supplement 1, p. 17.
    [13]
    S. Das, S. Roy, S. Nayak, T. Bhattacharyya, and S. Bhattacharyya, Case study−Analysis of grayish stick type sliver in cold rolled strips, Eng. Fail. Anal., 44(2014), p. 95. doi: 10.1016/j.engfailanal.2014.05.002
    [14]
    H. Cui, H.J. Wu, F. Yue, W.S. Wu, M. Wang, Y.P. Bao, B. Chen, and C.X. Ji, Surface defects of cold-rolled Ti-IF steel sheets due to non-metallic inclusions, J. Iron Steel Res. Int., 18(2011), Suppl. 2, p. 335.
    [15]
    C. Genzano, J. Madías, D. Dalmaso, J. Petroni, D. Biurrun, and G.D. Gresia, Elimination of surface defects in cold-rolled extra low carbon steel sheet, [in] the ISS 85th Steelmaking Conference, Nashville, 2002, p. 325.
    [16]
    P. Záhumenský and M. Merwin, Evolution of artificial defects from slab to rolled products, J. Mater. Process. Technol., 196(2008), No. 1-3, p. 266. doi: 10.1016/j.jmatprotec.2007.05.045
    [17]
    H. Utsunomiya, K. Hara, R. Matsumoto, and A. Azushima, Formation mechanism of surface scale defects in hot rolling process, CIRP Ann., 63(2014), No. 1, p. 261. doi: 10.1016/j.cirp.2014.03.022
    [18]
    S. Moir and J. Preston, Surface defects—evolution and behaviour from cast slab to coated strip, J. Mater. Process. Technol., 125-126(2002), p. 720. doi: 10.1016/S0924-0136(02)00318-7
    [19]
    R. Inoue, K. Kiyokawa, K. Tomoda, S. Ueda, and T. Ariyama, Three dimensional estimation of multi-component inclusion particle in steel, Metall. Anal., 32(2012), No. 8, p. 1.
    [20]
    D. Janis, R. Inoue, A. Karasev, and P.G. Jönsson, Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys, Adv. Mater. Sci. Eng., 2014(2014), art. No. 210486.
    [21]
    Y.P. Bao, M. Wang, and W. Jiang, A method for observing the three-dimensional morphologies of inclusions in steel, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 111. doi: 10.1007/s12613-012-0524-3
    [22]
    X.W. Zhang, L.F. Zhang, W. Yang, Y. Wang, Y. Liu, and Y.C. Dong, Characterization of the three-dimensional morphology and formation mechanism of inclusions in linepipe steels, Metall. Mater. Trans. B, 48(2017), No. 1, p. 701. doi: 10.1007/s11663-016-0833-4
    [23]
    J. Guo, S.S. Cheng, H.J. Guo, and Y.G. Mei, Determination of non-metallic inclusions in a continuous casting slab of ultra-low carbon interstitial free steel by applying of metallographic method, electrolytic method and RTO technique, Sci. Rep., 9(2019), art. No. 2929. doi: 10.1038/s41598-018-36766-6
    [24]
    R. Inoue, S. Ueda, T. Ariyama, and H. Suito, Extraction of nonmetallic inclusion particles containing MgO from steel, ISIJ Int., 51(2011), No. 12, p. 2050. doi: 10.2355/isijinternational.51.2050
    [25]
    R. Inoue, R. Kimura, S. Ueda, and H. Suito, Applicability of nonaqueous electrolytes for electrolytic extraction of inclusion particles containing Zr, Ti, and Ce, ISIJ Int., 53(2013), No. 11, p. 1906. doi: 10.2355/isijinternational.53.1906
    [26]
    R. Diederichs and W. Bleck, Modelling of manganese sulphide formation during solidification, part I: Description of MnS formation parameters, Steel Res. Int., 77(2006), No. 3, p. 202. doi: 10.1002/srin.200606375
    [27]
    R. Diederichs, R. Bülte, G. Pariser, and W. Bleck, Modelling of manganese sulphide formation during solidification, Part II: Correlation of solidification and MnS formation, Steel Res. Int., 77(2006), No. 4, p. 256. doi: 10.1002/srin.200606383
    [28]
    Q.C. Peng, J.L. Yang, S. Peng, X.H. Zhang, S.P. Tang, and Y.S. Tian, Analysis of linear defects of cold-rolled galvanized sheet, Adv. Mater. Res., 652-654(2013), p. 2034. doi: 10.4028/www.scientific.net/AMR.652-654.2034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(2739) PDF Downloads(81) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return