F. Maddah, M. Alitabar, and H. Yoozbashizadeh, Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 373-379. https://doi.org/10.1007/s12613-020-1974-7
Cite this article as:
F. Maddah, M. Alitabar, and H. Yoozbashizadeh, Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 373-379. https://doi.org/10.1007/s12613-020-1974-7
Research Article

Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution

+ Author Affiliations
  • Corresponding author:

    H. Yoozbashizadeh    E-mail: yoozbashi@sharif.edu

  • Received: 14 October 2019Revised: 28 December 2019Accepted: 31 December 2019Available online: 8 January 2020
  • The present study evaluates the reductive leaching of indium from indium-bearing zinc ferrite using oxalic acid as a reducer in sulfuric acid solution. The effect of main factors affecting the process rate, including the oxalic-acid-to-sulfuric-acid ratio, stirring rate, grain size, temperature, and the initial concentration of synergic acid, was precisely evaluated. The results confirmed the acceptable efficiency of dissolving indium in the presence of oxalic acid. The shrinking-core model with a chemical-reaction-controlled step can correctly describe the kinetics of indium dissolution. On the basis of an apparent activation energy of 44.55 kJ/mol and a reaction order with respect to the acid concentration of 1.14, the presence of oxalic acid was found to reduce the sensitivity to temperature changes and to increase the effect of changes in acid concentration. Finally, the equation of the kinetic model based on the factors under study is presented.

  • loading
  • [1]
    A.M. Alfantazi and R.R. Moskalyk, Processing of indium: A review, Miner. Eng., 16(2003), No. 8, p. 687. doi: 10.1016/S0892-6875(03)00168-7
    [2]
    D. Pradhan, S. Panda, and L.B. Sukla, Recent advances in indium metallurgy: A review, Miner. Process. Extr. Metall. Rev., 39(2018), No. 3, p. 167. doi: 10.1080/08827508.2017.1399887
    [3]
    B.P. Rao and K.H. Rao, Distribution of In3+ ions in indium-substituted Ni–Zn–Ti ferrites, J. Magn. Magn. Mater., 292(2005), p. 44. doi: 10.1016/j.jmmm.2004.10.093
    [4]
    Š. Langová, J. Leško, and D. Matýsek, Selective leaching of zinc from zinc ferrite with hydrochloric acid, Hydrometallurgy, 95(2009), No. 3-4, p. 179. doi: 10.1016/j.hydromet.2008.05.040
    [5]
    X.H. Li, Y.J. Zhang, Q.L. Qin, J. Yang, and Y.S. Wei, Indium recovery from zinc oxide flue dust by oxidative pressure leaching, Trans. Nonferrous Met. Soc. China, 20(2010), No. Suppl. 1, p. s141.
    [6]
    L.Y. Zhang, J.M. Mo, X.H. Li, L.P. Pan, X.Y. Liang, and G.T. Wei, A kinetic study of indium leaching from indium-bearing zinc ferrite under microwave heating, Metall. Mater. Trans. B, 44(2013), No. 6, p. 1329. doi: 10.1007/s11663-013-9930-9
    [7]
    L.Y. Zhang, X.H. Li, Y. Sun, X.C. Huang, X.B. Liu, and J.F. Yang, Microwave enhanced acid leaching of indium from zinc leaching residues containing indium-bearing zinc ferrite, Met. Mine, 3(2014), p. 36.
    [8]
    X.H. Li, J.Q. Xu, and L. Pan, A new mechanical activation technology to enhance leaching indium from hard-zinc, Front. Sep. Sci. Technol., (2004), p. 980. doi: 10.1142/9789812702623_0189
    [9]
    Y.J. Zhang, X.H. Li, L.P. Pan, Y.S. Wei, and X.Y. Liang, Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite, Hydrometallurgy, 102(2010), No. 1-4, p. 95. doi: 10.1016/j.hydromet.2010.02.003
    [10]
    J.H. Yao, X.H. Li, and Y.W. Li, Study on indium leaching from mechanically activated hard zinc residue, J. Min. Metall. Sect. B, 47(2011), No. 1, p. 63. doi: 10.2298/JMMB1101063Y
    [11]
    J.H. Yao, X.H. Li, L.P. Pan, J.M. Mo, and Z.P. Wen, Investigations on indium and zinc leachabilities from indium-bearing zinc ferrite improved by planetary ball milling, J. Mater. Eng. Perform., 22(2013), No. 5, p. 1311. doi: 10.1007/s11665-012-0352-7
    [12]
    J.H. Yao and X.H. Li, Study on indium leaching from indium-poor zinc residue enhanced by ultrasonic treatment, Adv. Mater. Res., 201-203(2011), p. 1770. doi: 10.4028/www.scientific.net/AMR.201-203.1770
    [13]
    M.C.B. Fortes and J.S. Benedetto, Separation of indium and iron by solvent extraction, Miner. Eng., 11(1998), No. 5, p. 447. doi: 10.1016/S0892-6875(98)00023-5
    [14]
    P. Xing, B.Z. Ma, P. Zeng, C.Y. Wang, L. Wang, Y.L. Zhang, Y.Q. Chen, S. Wang, and Q.Y. Wang, Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1217. doi: 10.1007/s12613-017-1514-2
    [15]
    S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim, Study on the kinetics of iron oxide leaching by oxalic acid, Int. J. Miner. Process., 80(2006), No. 2-4, p. 144. doi: 10.1016/j.minpro.2006.03.012
    [16]
    Z.G. Deng, F. Zhang, C. Wei, C.X. Li, X.B. Li, G. Fan, and M.T. Li, Acid leaching zinc and indium with reduction ferric simultaneously from marmatite and high-iron neutral leaching residue, [in] S. Alam, H. Kim, N.R. Neelameggham, T. Ouchi, and H. Oosterho, eds, Rare Metal Technology, Springer Cham, Germany, 2016, p. 55.
    [17]
    F. Zhang, C. Wei, Z.G. Deng, X.B. Li, C.X. Li, and M.T. Li, Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant, Hydrometallurgy, 161(2016), p. 102. doi: 10.1016/j.hydromet.2016.01.029
    [18]
    F. Zhang, C. Wei, Z.G. Deng, C.X. Li, X.B. Li, and M.T. Li, Reductive leaching of zinc and indium from industrial zinc ferrite particulates in sulphuric acid media, Trans. Nonferrous Met. Soc. China, 26(2016), No. 9, p. 2495. doi: 10.1016/S1003-6326(16)64342-X
    [19]
    V.R. Ambikadevi and M. Lalithambika, Effect of organic acids on ferric iron removal from iron-stained kaolinite, Appl. Clay Sci., 16(2000), No. 3-4, p. 133. doi: 10.1016/S0169-1317(99)00038-1
    [20]
    L.G. Felipe, S.R. Eleazar, H.C. Leticia, A.H.H. Roman, and C.S. Eduardo, Kinetics study of iron leaching from kaolinitic clay using oxalic acid, Eur. Sci. J., 11(2015), No. 12, p. 12.
    [21]
    U.K. Sultana and A.S.W. Kurny, Dissolution kinetics of iron oxides in clay in oxalic acid solutions, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1083. doi: 10.1007/s12613-012-0674-3
    [22]
    K.M. Parida and N.N. Das, Reductive dissolution of hematite in hydrochloric acid medium by some inorganic and organic reductants: A comparative study, Indian J. Eng. Mater. Sci., 3(1996), No. 6, p. 243.
    [23]
    R.N. Sahoo, P.K. Naik, and S.C. Das, Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution, Hydrometallurgy, 62(2001), No. 3, p. 157. doi: 10.1016/S0304-386X(01)00196-7
    [24]
    A. Prasad Das, S. Swain, S. Panda, N. Pradhan, and L.B. Sukla, Reductive acid leaching of low grade manganese ores, Geomaterials, 2(2012), No. 4, p. 70. doi: 10.4236/gm.2012.24011
    [25]
    A.A. Nayl and H.F. Aly, Acid leaching of ilmenite decomposed by KOH, Hydrometallurgy, 97(2009), No. 1-2, p. 86. doi: 10.1016/j.hydromet.2009.01.011
    [26]
    A.A. Nayl, N.S. Awwad, and H.F. Aly, Kinetics of acid leaching of ilmenite decomposed by KOH: Part 2. Leaching by H2SO4 and C2H2O4, J. Hazard. Mater., 168(2009), No. 2-3, p. 793. doi: 10.1016/j.jhazmat.2009.02.076
    [27]
    W. Jonglertjunya, S. Rattanaphan, and P. Tipsak, Kinetics of the dissolution of ilmenite in oxalic and sulfuric acid solutions, Asia-Pac. J. Chem. Eng., 9(2014), No. 1, p. 24. doi: 10.1002/apj.1742
    [28]
    P. Zürner and G. Frisch, Leaching, and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent, ACS Sustainable Chem. Eng., 7(2019), No. 5, p. 5300. doi: 10.1021/acssuschemeng.8b06331
    [29]
    J.Y. Cui, N.W. Zhu, D.L. Luo, Y. Li, P.X. Wu, Z. Dang, and X. Hu, The role of oxalic acid in the leaching system for recovering indium from waste liquid crystal display panels, ACS Sustainable Chem. Eng., 7(2019), No. 4, p. 3849. doi: 10.1021/acssuschemeng.8b04756
    [30]
    D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos, Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions, Hydrometallurgy, 42(1996), No. 2, p. 257. doi: 10.1016/0304-386X(95)00104-O
    [31]
    M. Taxiarchou, D. Panias, I. Douni, I. Paspaliaris, and A. Kontopoulos, Dissolution of hematite in acidic oxalate solutions, Hydrometallurgy, 44(1997), No. 3, p. 287. doi: 10.1016/S0304-386X(96)00075-8
    [32]
    R. Salmimies, M. Mannila, J Kallas, and A. Häkkinen, Acidic dissolution of magnetite: Experimental study on the effects of acid concentration and temperature, Clays and Clay Miner., 59(2011), No. 2, p. 136. doi: 10.1346/CCMN.2011.0590203
    [33]
    J. Wiley, K. Hepburn, and O. Levenspiel, Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1999.
    [34]
    Y.J. Zhang, X.H. Li, L.P. Pan, X.Y. Liang, and X.P. Li, Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite, Hydrometallurgy, 100(2010), No. 3-4, p. 172. doi: 10.1016/j.hydromet.2009.10.015
    [35]
    L. Tian, Y. Liu, T.A. Zhang, G.Z. Lv, S. Zhou, and G.Q. Zhang, Kinetics of indium dissolution from marmatite with high indium content in pressure acid leaching, Rare Met., 36(2017), No. 1, p. 69. doi: 10.1007/s12598-016-0762-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(3019) PDF Downloads(34) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return