Peng Liu, Li-bo Zhang, Bing-guo Liu, Guang-jun He, Jin-hui Peng, and Meng-yang Huang, Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 88-97. https://doi.org/10.1007/s12613-020-1985-4
Cite this article as:
Peng Liu, Li-bo Zhang, Bing-guo Liu, Guang-jun He, Jin-hui Peng, and Meng-yang Huang, Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 88-97. https://doi.org/10.1007/s12613-020-1985-4
Research Article

Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag

+ Author Affiliations
  • Corresponding authors:

    Bing-guo Liu    E-mail: bingoliu@126.com

    Guang-jun He    E-mail: hegj9@126.com

  • Received: 24 October 2019Revised: 8 January 2020Accepted: 9 January 2020Available online: 14 January 2020
  • The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery; it can alleviate the environmental pressure caused by slag stocking. The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method. Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed. The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.

  • loading
  • [1]
    Y.Z. Wang, J.L. Zhang, Z.J. Liu, and C.B. Du, Carbothermic reduction reactions at the metal–slag interface in Ti-bearing slag from a blast furnace, JOM, 69(2017), No. 11, p. 2397. doi: 10.1007/s11837-017-2508-2
    [2]
    J.X. Liu, G.J. Cheng, Z.G. Liu, M.S. Chu, and X.X. Xue, Reduction process of pellet containing high chromic vanadium–titanium magnetite in cohesive zone, Steel Res. Int., 86(2015), No. 7, p. 808. doi: 10.1002/srin.201400212
    [3]
    S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets, JOM, 69(2017), No. 9, p. 1646. doi: 10.1007/s11837-017-2367-x
    [4]
    S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 71(2019), No. 3, p. 1144. doi: 10.1007/s11837-018-2863-7
    [5]
    Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 131. doi: 10.1007/s12613-018-1556-0
    [6]
    M. Zhou, T. Jiang, S.T. Yang, and X.X. Xue, Vanadium–titanium magnetite ore blend optimization for sinter strength based on iron ore basic sintering characteristics, Int. J. Miner. Process., 142(2015), p. 125. doi: 10.1016/j.minpro.2015.04.019
    [7]
    C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction–melting–magnetic separation processing, JOM, 69(2017), No. 10, p. 1801. doi: 10.1007/s11837-017-2507-3
    [8]
    H.H. Lü, M.Z. Wu, Z.L. Zhang, X.R. Wu, L.S. Li, and Z.F. Gao, Co-precipitation behaviour of titanium-containing silicate solution, Chem. Pap., 70(2016), No. 12, p. 1632.
    [9]
    Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), No. 1-2, p. 52. doi: 10.1016/j.hydromet.2008.08.002
    [10]
    Y.F. Guo, S.S. Li, T. Jiang, G.Z. Qiu, and F. Chen, A process for producing synthetic rutile from Panzhihua titanium slag, Hydrometallurgy, 147-148(2014), p. 134. doi: 10.1016/j.hydromet.2014.05.009
    [11]
    D. Wang, J.L. Chu, J. Li, T. Qi, and W.J. Wang, Anti-caking in the production of titanium dioxide using low-grade titanium slag via the NaOH molten salt method, Powder Technol., 232(2012), p. 99. doi: 10.1016/j.powtec.2012.07.048
    [12]
    T. Jiang, X.X. Xue, P.N. Duan, X. Liu, S.H. Zhang, and R. Liu, Carbothermal reduction–nitridation of titania-bearing blast furnace slag, Ceram. Int., 34(2008), No. 7, p. 1643. doi: 10.1016/j.ceramint.2007.07.005
    [13]
    G. Chen, J. Chen, and J.H. Peng, Effects of mechanical activation on structural and microwave absorbing characteristics of high titanium slag, Powder Technol., 286(2015), p. 218. doi: 10.1016/j.powtec.2015.08.021
    [14]
    C.B. Cheng, R.H. Fan, Z.Y. Wang, Q. Shao, X.K. Guo, P.T. Xie, Y.S. Yin, Y.L. Zhang, L.Q. An, Y.H. Lei, J.E. Ryu, A. Shankar, and Z.H. Guo, Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures, Carbon, 125(2017), p. 103. doi: 10.1016/j.carbon.2017.09.037
    [15]
    T. Ono and M. Ueki, Effect of graphite addition on the microstructure and mechanical properties of hot-pressed titanium carbide, [in] S. Somiya, ed., Advanced Materials '93. Ceramics, Powders, Corrosion and Advanced Processing, Elsevier, Amsterdam, Netherlands, 1994, p. 585.
    [16]
    A.M. Shul’pekov and G.V. Lyamina, Electrical and thermomechanical properties of materials based on nonstoichiometric titanium carbide prepared by self-propagating high-temperature synthesis, Inorg. Mater., 47(2011), No. 7, p. 722. doi: 10.1134/S002016851107020X
    [17]
    L. Pan, T. Shoji, A. Nagataki, and Y. Nakayama, Field emission properties of titanium carbide coated carbon nanotube arrays, Adv. Eng. Mater., 9(2007), No. 7, p. 584. doi: 10.1002/adem.200700064
    [18]
    Z.W. Peng, J.Y. Hwang, B.G. Kim, J. Mouris, and R. Hutcheon, Microwave absorption capability of high volatile bituminous coal during pyrolyisis, Energy Fuels, 26(2012), No. 8, p. 5146. doi: 10.1021/ef300914f
    [19]
    G.B. Dudley, R. Richert, and A.E. Stiegman, On the existence of and mechanism for microwave-specific reaction rate enhancement, Chem. Sci., 6(2015), No. 4, p. 2144. doi: 10.1039/C4SC03372H
    [20]
    M. Damm and C.O. Kappe, Parallel microwave chemistry in silicon carbide reactor platforms: An in-depth investigation into heating characteristics, Mol. Diversity, 13(2009), No. 4, p. 529. doi: 10.1007/s11030-009-9167-3
    [21]
    C.A. Kuhnen, E.L. Dall’Oglio, and P.T. de Sousa, Quantum tunneling contribution for the activation energy in microwave-induced reactions, J. Phys. Chem. A, 121(2017), No. 30, p. 5735. doi: 10.1021/acs.jpca.7b04875
    [22]
    S.H. Li, C. Akyel, and R.G. Bosisio, Precise calculations and measurements on the complex dielectric constant of lossy materials using TM010 cavity perturbation techniques, IEEE Trans. Microwave Theory Tech., 29(1981), No. 10, p. 1041. doi: 10.1109/TMTT.1981.1130496
    [23]
    Y.P. Zhang, E. Li, J. Zhang, C.Y. Yu, H. Zheng, and G.F. Guo, A broadband variable-temperature test system for complex permittivity measurements of solid and powder materials, Rev. Sci. Instrum., 89(2018), No. 2, art. No. 024701. doi: 10.1063/1.4993507
    [24]
    [25]
    R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0°C and 35°C, Chem. Phys. Lett., 306(1999), No. 1-2, p. 57. doi: 10.1016/S0009-2614(99)00455-8
    [26]
    T. Meissner and F.J. Wentz, The complex dielectric constant of pure and sea water from microwave satellite observations, IEEE Trans. Geosci. Remote Sens., 42(2004), No. 9, p. 1836. doi: 10.1109/TGRS.2004.831888
    [27]
    J.W. Chen, Y. Jiao, and X.D. Wang, Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 822. doi: 10.1007/s12613-019-1795-8
    [28]
    Z.W. Peng, X.L. Lin, Z.Y. Li, J.Y. Hwang, B.G. Kim, Y.B. Zhang, G.H. Li, and T. Jiang, Dielectric characterization of Indonesian low-rank coal for microwave processing, Fuel Process. Technol., 156(2017), p. 171. doi: 10.1016/j.fuproc.2016.11.001
    [29]
    D. Beneroso, A. Albero-Ortiz, J. Monzó-Cabrera, A. Díaz-Morcillo, A. Arenillas, and J.A. Menéndez, Dielectric characterization of biodegradable wastes during pyrolysis, Fuel, 172(2016), p. 146. doi: 10.1016/j.fuel.2016.01.016
    [30]
    X.L. Zhang, D.O. Hayward, and D.M.P. Mingos, Microwave dielectric heating behavior of supported MoS2 and Pt catalysts, Ind. Eng. Chem. Res., 40(2001), No. 13, p. 2810. doi: 10.1021/ie0007825
    [31]
    R. Meredith, Engineers’ Handbook of Industrial Microwave Heating, The Institution of Engineering and Technology, London, 1998.
    [32]
    D.M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons. Inc., New York, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(4030) PDF Downloads(70) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return