Chao-qun Cui, Bing Wang, Yi-xin Zhao, Yong-Jin Zhang,  and Li-ming Xue, Risk management for mine closure: A cloud model and hybrid semi-quantitative decision method, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1021-1035. https://doi.org/10.1007/s12613-020-2002-7
Cite this article as:
Chao-qun Cui, Bing Wang, Yi-xin Zhao, Yong-Jin Zhang,  and Li-ming Xue, Risk management for mine closure: A cloud model and hybrid semi-quantitative decision method, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1021-1035. https://doi.org/10.1007/s12613-020-2002-7
Research Article

Risk management for mine closure: A cloud model and hybrid semi-quantitative decision method

+ Author Affiliations
  • Corresponding authors:

    Bing Wang    E-mail: bingwang_bit@163.com

    Yong-Jin Zhang    E-mail: zhangyongjin0310@163.com

  • Received: 30 October 2019Revised: 5 February 2020Accepted: 7 February 2020Available online: 11 February 2020
  • Mine closure is associated with many negative impacts on society and the environment. If these effects are not rationally addressed, they would pose risks of mine closure. Thus, a risk management method is needed to mitigate these adverse impacts and address mine-closure issues. An integral framework for mine-closure risk management that includes risk assessment and risk treatment was proposed. Given the fuzziness and randomness of the transformation between qualitative and quantitative knowledge in the risk assessment process, a novel risk assessment method based on the cloud model was presented, which fully considers the uncertainty in risks themselves and in the reasoning process. Closed mine reutilization is an effective risk treatment option in response to the identified high risks, but it requires selecting optimal reutilization strategies for the successful implementation of the reuse plan. To this end, a hybrid semi-quantitative decision method is proposed to optimize decision-making. The results of a case study showed that this risk management methodology can help budget planning for risk treatment and provide an instructional framework to effectively reduce the negative effects of closed mines.

  • loading
  • [1]
    A. Krzemień, A.S. Sánchez, P.R. Fernández, K. Zimmermann, and F.G. Coto, Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management, J. Cleaner Prod., 139(2016), p. 1044. doi: 10.1016/j.jclepro.2016.08.149
    [2]
    J.H. Haggerty, M. N. Haggerty, K. Roemer, and J. Rose, Planning for the local impacts of coal facility closure: Emerging strategies in the U.S. West, Resour. Policy, 57(2018), p. 69. doi: 10.1016/j.resourpol.2018.01.010
    [3]
    T. Zvarivadza, Large scale miners–Communities partnerships: A plausible option for communities survival beyond mine closure, Resour. Policy, 56(2018), p. 87. doi: 10.1016/j.resourpol.2017.12.005
    [4]
    C.C. Qi, A. Fourie, Q.S. Chen, and Q.L. Zhang, A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill, J. Cleaner Prod., 183(2018), p. 566. doi: 10.1016/j.jclepro.2018.02.154
    [5]
    P. Peck and K. Sinding, Financial assurance and mine closure: Stakeholder expectations and effects on operating decisions, Resour. Policy, 34(2009), No. 4, p. 227. doi: 10.1016/j.resourpol.2009.03.001
    [6]
    D. Laurence, Optimisation of the mine closure process, J. Cleaner Prod., 14(2006), No. 3-4, p. 285. doi: 10.1016/j.jclepro.2004.04.011
    [7]
    D. Laurence, Establishing a sustainable mining operation: An overview, J. Cleaner Prod., 19(2011), No. 2-3, p. 278. doi: 10.1016/j.jclepro.2010.08.019
    [8]
    C.J. Unger, A.M. Lechner, J. Kenway, V. Glenn, and A. Walton, A jurisdictional maturity model for risk management, accountability and continual improvement of abandoned mine remediation programs, Resour. Policy, 43(2015), p. 1. doi: 10.1016/j.resourpol.2014.10.008
    [9]
    L. Marais, Resources policy and mine closure in South Africa: The case of the Free State Gold fields, Resour. Policy, 38(2013), No. 3, p. 363. doi: 10.1016/j.resourpol.2013.04.004
    [10]
    X.F. Wang, L. Chen, C.G. Liu, Y.Q. Zhang, and K. Li, Optimal production efficiency of Chinese coal enterprises under the background of de-capacity—Investigation on the data of coal enterprises in Shandong Province, J. Cleaner Prod., 227(2019), p. 355. doi: 10.1016/j.jclepro.2019.04.191
    [11]
    J. Lin, D. Fridley, H.Y. Lu, L. Price, and N. Zhou, Has coal use peaked in China: Near-term trends in China’s coal consumption, Energy Policy, 123(2018), p. 208. doi: 10.1016/j.enpol.2018.08.058
    [12]
    X.Q. He and L. Song, Status and future tasks of coal mining safety in China, Saf. Sci., 50(2012), No. 4, p. 894. doi: 10.1016/j.ssci.2011.08.012
    [13]
    X. Cao, Policy and regulatory responses to coalmine closure and coal resources consolidation for sustainability in Shanxi, China, J. Cleaner Prod., 145(2017), p. 199. doi: 10.1016/j.jclepro.2017.01.050
    [14]
    I.J. Kowalska, Risk management in the hard coal mining industry: Social and environmental aspects of collieries’ liquidation, Resour. Policy, 41(2014), p. 124. doi: 10.1016/j.resourpol.2014.05.002
    [15]
    X.P. Shi, B. Rioux, and P. Galkin, Unintended consequences of China’s coal capacity cut policy, Energy Policy, 113(2018), p. 478. doi: 10.1016/j.enpol.2017.11.034
    [16]
    S. Amirshenava and M. Osanloo, Mine closure risk management: An integration of 3D risk model and MCDM techniques, J. Cleaner Prod., 184(2018), p. 389. doi: 10.1016/j.jclepro.2018.01.186
    [17]
    J. Galvin, Critical role of risk management in ground engineering and opportunities for improvement, Int. J. Min. Sci. Technol., 27(2017), No. 5, p. 725. doi: 10.1016/j.ijmst.2017.07.005
    [18]
    X.B. Liang, W. Liang, L.B. Zhang, and X.Y. Guo, Risk assessment for long-distance gas pipelines in coal mine gobs based on structure entropy weight method and multi-step backward cloud transformation algorithm based on sampling with replacement, J. Cleaner Prod., 227(2019), p. 218. doi: 10.1016/j.jclepro.2019.04.133
    [19]
    G.K. Koulinas, P.K. Marhavilas, O.E. Demesouka, A.P. Vavatsikos, and D.E. Koulouriotis, Risk analysis and assessment in the worksites using the fuzzy-analytical hierarchy process and a quantitative technique—A case study for the Greek construction sector, Saf. Sci., 112(2019), p. 96. doi: 10.1016/j.ssci.2018.10.017
    [20]
    T. Chong, S. Yi, and C. Heng, Application of set pair analysis method on occupational hazard of coal mining, Saf. Sci., 92(2017), p. 10. doi: 10.1016/j.ssci.2016.09.005
    [21]
    M. Akter, M. Jahan, R. Kabir, D.S. Karim, A. Haque, M. Rahman, and M. Salehin, Risk assessment based on fuzzy synthetic evaluation method, Sci. Total Environ., 658(2019), p. 818. doi: 10.1016/j.scitotenv.2018.12.204
    [22]
    S. Kaeeni, M. Khalilian, and J. Mohammadzadeh, Derailment accident risk assessment based on ensemble classification method, Saf. Sci., 110(2018), p. 3. doi: 10.1016/j.ssci.2017.11.006
    [23]
    M. Yazdi, Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach, Saf. Sci., 110(2018), p. 438. doi: 10.1016/j.ssci.2018.03.005
    [24]
    I. Hasheela, G.I.C. Schneider, R. Ellmies, A. Haidula, R. Leonard, K. Ndalulilwa, O. Shigwana, and B. Walmsley, Risk assessment methodology for shut-down and abandoned mine sites in Namibia, J. Geochem. Explor., 144(2014), p. 572. doi: 10.1016/j.gexplo.2014.05.009
    [25]
    Y.B. Guo, X.L. Meng, T. Meng, D.G. Wang, and S.H. Liu, A novel method of risk assessment based on cloud inference for natural gas pipelines, J. Nat. Gas Sci. Eng., 30(2016), p. 421. doi: 10.1016/j.jngse.2016.02.051
    [26]
    D.Y. Li, C.Y. Liu, and W.Y. Gan, A new cognitive model: Cloud model, Int. J. Intell. Syst., 24(2009), No. 3, p. 357. doi: 10.1002/int.20340
    [27]
    C.G. Wu, L.Y. Zhou, L.B. Zhang, J.L. Jin, and Y.L. Zhou, Precondition cloud algorithm and Copula coupling model-based approach for drought hazard comprehensive assessment, Int. J. Disaster Risk Reduct., 38(2019), art. No. 101220. doi: 10.1016/j.ijdrr.2019.101220
    [28]
    L.M. Zhang, X.G. Wu, L.Y. Ding, and M.J. Skibniewski, A novel model for risk assessment of adjacent buildings in tunneling environments, Build. Environ., 65(2013), p. 185.
    [29]
    S.R. Mohandes and X.Q. Zhang, Towards the development of a comprehensive hybrid fuzzy-based occupational risk assessment model for construction workers, Saf. Sci., 115(2019), p. 294. doi: 10.1016/j.ssci.2019.02.018
    [30]
    C.J.A. Mitchell and K. O’Neill, Mine site re-purposing in northern Ontario: An application of the ‘Transition Template’, Extr. Ind. Soc., 3(2016), No. 4, p. 1018.
    [31]
    A. Azapagic, Developing a framework for sustainable development indicators for the mining and minerals industry, J. Cleaner Prod., 12(2004), No. 6, p. 639. doi: 10.1016/S0959-6526(03)00075-1
    [32]
    P.V. Matos, E. Cardadeiro, J.A. da Silva, and C.F. De Muylder, The use of multi-criteria analysis in the recovery of abandoned mines: a study of intervention in Portugal, RAUSP Manage. J., 53(2018), No. 2, p. 214. doi: 10.1016/j.rauspm.2017.06.005
    [33]
    M. Yavuz and B.L. Altay, Reclamation project selection using fuzzy decision-making methods, Environ. Earth Sci., 73(2015), No. 10, p. 6167. doi: 10.1007/s12665-014-3842-0
    [34]
    A.H. Bangian, M. Ataei, A. Sayadi, and A. Gholinejad, Optimizing post-mining land use for pit area in open-pit mining using fuzzy decision making method, Int. J. Environ. Sci. Technol., 9(2012), No. 4, p. 613. doi: 10.1007/s13762-012-0047-5
    [35]
    S.S. Erzurumlu and Y.O. Erzurumlu, Sustainable mining development with community using design thinking and multi-criteria decision analysis, Resour. Policy, 46(2015), p. 6. doi: 10.1016/j.resourpol.2014.10.001
    [36]
    D.C. Liang and Z.S. Xu, The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets, Appl. Soft Comput., 60(2017), p. 167. doi: 10.1016/j.asoc.2017.06.034
    [37]
    S. Tsolaki-fiaka, G.D. Bathrellos, and H.D. Skilodimou, Multi-criteria decision analysis for an abandoned quarry in the Evros Region (NE Greece), Land, 7(2018), No. 2, p. 43. doi: 10.3390/land7020043
    [38]
    H.Y. Sun, S.F. Wang, and X.M. Hao, An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China, Agric. Water Manage., 179(2017), p. 324. doi: 10.1016/j.agwat.2016.08.002
    [39]
    D.L. Wang, J.P. Zheng, X.F. Song, G. Ma, and Y. Liu, Assessing industrial ecosystem vulnerability in the coal mining area under economic fluctuations, J. Cleaner Prod., 142(2017), p. 4019. doi: 10.1016/j.jclepro.2016.10.049
    [40]
    A.C. Caputo, P.M. Pelagagge, and P. Salini, AHP-based methodology for selecting safety devices of industrial machinery, Saf. Sci, 53(2013), p. 202. doi: 10.1016/j.ssci.2012.10.006
    [41]
    H. Soltanmohammadi, M. Osanloo, and A.A. Bazzazi, An analytical approach with a reliable logic and a ranking policy for post-mining land-use determination, Land Use Policy, 27(2010), No. 2, p. 364. doi: 10.1016/j.landusepol.2009.05.001
    [42]
    P.R. Garvey and Z.F. Lansdowne, Risk matrix: An approach for identifying, assessing, and ranking program risks, Air Force J. Logist., 22(1998), No. 1, p. 16.
    [43]
    C.R. Domínguez, I.V. Martínez, P.M.P. Peña, and A.R. Ochoa, Analysis and evaluation of risks in underground mining using the decision matrix risk-assessment (DMRA) technique in Guanajuato, Mexico, J. Sustainable Min., 18(2019), No. 1, p. 52. doi: 10.1016/j.jsm.2019.01.001
    [44]
    C.Q. Cui, B. Wang, Y.X. Zhao, Q. Wang, and Z.M. Sun, China’s regional sustainability assessment on mineral resources: Results from an improved analytic hierarchy process-based normal cloud model, J. Cleaner Prod., 210(2019), p. 105. doi: 10.1016/j.jclepro.2018.10.324
    [45]
    M. Nehring and X. Cheng, An investigation into the impact of mine closure and its associated cost on life of mine planning and resource recovery, J. Cleaner Prod., 127(2016), p. 228. doi: 10.1016/j.jclepro.2016.03.162
    [46]
    H. Soltanmohammadi, M. Osanloo, and A.A. Bazzazi, Deriving preference order of post-mining land-uses through MLSA framework: Application of an outranking technique, Environ. Geol., 58(2009), No. 4, p. 877. doi: 10.1007/s00254-008-1563-y
    [47]
    C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
    [48]
    M.R. Gorman and D.A. Dzombak, A review of sustainable mining and resource management: Transitioning from the life cycle of the mine to the life cycle of the mineral, Resour. Conserv. Recycl., 137(2018), p. 281. doi: 10.1016/j.resconrec.2018.06.001
    [49]
    N. Novas, J.A. Gázquez, J. MacLennan, R.M. García, M. Fernández-Ros, and F. Manzano-Agugliaro, A real-time underground environment monitoring system for sustainable tourism of caves, J. Cleaner Prod., 142(2017), p. 2707. doi: 10.1016/j.jclepro.2016.11.005
    [50]
    C.R. Matos, J.F. Carneiro, and P.P. Silva, Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification, J. Energy Storage, 21(2019), p. 241. doi: 10.1016/j.est.2018.11.023
    [51]
    J.Q. Shi, R.M. Rubio, and S. Durucan, An improved void-resistance model for abandoned coal mine gas reservoirs, Int. J. Coal Geol., 165(2016), p. 257. doi: 10.1016/j.coal.2016.09.001
    [52]
    P.Y. Guo. L. Zheng, X.M. Sun, M.C. He, Y.W. Wang, and J.S. Shi, Sustainability evaluation model of geothermal resources in abandoned coal mine, Appl. Therm. Eng., 144(2018), p. 804. doi: 10.1016/j.applthermaleng.2018.06.070
    [53]
    B. Wang, Q. Wang, Y.M. Wei, and Z.P. Li, Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis, Renewable Sustainable Energy Rev., 90(2018), p. 187. doi: 10.1016/j.rser.2018.03.012
    [54]
    H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste back fill to underground stopes and open pits, J. Cleaner Prod., 188(2018), p. 601. doi: 10.1016/j.jclepro.2018.04.041
    [55]
    X. Zhao, A. Fourie, and C.C. Qi, An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1206. doi: 10.1007/s12613-019-1885-7
    [56]
    I. Palogos, M. Galetakis, C. Roumpos, and F. Pavloudakis, Selection of optimal land uses for the reclamation of surface mines by using evolutionary algorithms, Int. J. Min. Sci. Technol., 27(2017), No. 3, p. 491. doi: 10.1016/j.ijmst.2017.03.008
    [57]
    T.L. Saaty and L.T. Tran, On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process, Math. Comput. Modell., 46(2007), No. 7-8, p. 962. doi: 10.1016/j.mcm.2007.03.022
    [58]
    C.Q. Cui, B. Wang, Y.X. Zhao, and L.M. Xue, Waste mine to emerging wealth: Innovative solutions for abandoned underground coal mine reutilization on a waste management level, J. Cleaner Prod., 252(2020), art. No. 119748. doi: 10.1016/j.jclepro.2019.119748
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(5196) PDF Downloads(62) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return