Jashandeep Singhand Ashok Kumar, Investigation of structural, morphological and electrochemical properties of mesoporous La2CuCoO6 rods fabricated by facile hydrothermal route, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 987-995. https://doi.org/10.1007/s12613-020-2011-6
Cite this article as:
Jashandeep Singhand Ashok Kumar, Investigation of structural, morphological and electrochemical properties of mesoporous La2CuCoO6 rods fabricated by facile hydrothermal route, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 987-995. https://doi.org/10.1007/s12613-020-2011-6
Research Article

Investigation of structural, morphological and electrochemical properties of mesoporous La2CuCoO6 rods fabricated by facile hydrothermal route

+ Author Affiliations
  • Corresponding author:

    Ashok Kumar    E-mail: ashokku@nitttrchd.ac.in

  • Received: 30 October 2019Revised: 7 February 2020Accepted: 9 February 2020Available online: 11 February 2020
  • This work introduces the facile hydrothermal synthesis of double perovskite La2CuCoO6. X-ray diffraction pattern confirmed the formation of a monoclinic phase with P121/c1 symmetry. Transmission electron microscopy results revealed that the self-assembled porous rods were composed of nanocrystallite aggregates. The estimated specific surface area of these mesoporous rods with an average pore diameter of 6 nm was ~41 m2·g–1. The presence of ions with oxidation states of La3+, Cu2+, and Co2+/Co3+ on the surface of the mesoporous La2CuCoO6 rods was confirmed by X-ray photoelectron spectroscopic analysis. Via cyclicvoltammetry and chronopotentiometry, the electrode fabricated from the mesoporous La2CuCoO6 rods were found to exhibit pseudocapacitive behavior with a specific capacitance of 259.4 F·g–1 at a current density of 0.5 A·g–1. An ~89% retention in specific capacitance was achieved after 1000 charge/discharge cycles at a constant current density of 4 A·g–1.
  • loading
  • [1]
    W.J. Yin, B.C. Weng, J. Ge, Q.D. Sun, Z.Z. Li, and Y.F. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics, Energy Environ. Sci., 12(2019), No. 2, p. 442. doi: 10.1039/C8EE01574K
    [2]
    N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6, Adv. Mater., 17(2005), No. 18, p. 2225. doi: 10.1002/adma.200500737
    [3]
    J.E. Tasca, A.E. Lavat, and M. Gloria González, Double perovskites La2MMnO6 as catalyst for propane combustion, J. Asian Ceram. Soc., 5(2017), No. 3, p. 235. doi: 10.1016/j.jascer.2017.02.004
    [4]
    K. Aswathi, J.P. Palakkal, A.P. Pauloseb, and M.R. Varma, Structural and magnetic properties of multiferroic Y2NiMnO6 double perovskite, Ferroelectrics, 518(2017), No. 1, p. 223. doi: 10.1080/00150193.2017.1360679
    [5]
    A.S. Bhalla, R. Guo, and R. Roy, The perovskite structure—A review of its role in ceramic science and technology, Mater. Res. Innovations, 4(2000), No. 1, p. 3. doi: 10.1007/s100190000062
    [6]
    J.M. De Teresa, D. Serrate, J. Blasco, M.R. Ibarra, and L. Morellon, Impact of cation size on magnetic properties of (AA')2FeReO6 double perovskites, Phys. Rev. B, 69(2004), No. 14, art. No. 144401. doi: 10.1103/PhysRevB.69.144401
    [7]
    A. Kumar and A. Kumar, Electrochemical behavior of oxygen-deficient double perovskite, Ba2FeCoO6–δ, synthesized by facile wet chemical process, Ceram. Int., 45(2019), No. 11, p. 14105. doi: 10.1016/j.ceramint.2019.04.110
    [8]
    Q. Yang, Z.Y. Lu, J.F. Liu, X.D. Lei, Z. Chang, L. Luo, and X.M. Sun, Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts, Prog. Nat. Sci.:Mater. Int., 23(2013), No. 4, p. 351. doi: 10.1016/j.pnsc.2013.06.015
    [9]
    S.L. Chiam, H.N. Lim, S.M. Hafiz, A. Pandikumar, and N.M. Huang, Electrochemical performance of supercapacitor with stacked copper foils coated with graphene nanoplatelets, Sci. Rep., 8(2018), No. 1, art. No. 3093. doi: 10.1038/s41598-018-21572-x
    [10]
    T. Purkait, G. Singh, D. Kumar, M. Singh, and R.S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks, Sci. Rep., 8(2018), No. 1, art. No. 640. doi: 10.1038/s41598-017-18593-3
    [11]
    C.F. Lan, S. Zhao, T.T. Xu, J. Ma, S.Z. Hayase, and T.L. Ma, Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell, J. Alloys Compd., 655(2016), p. 208. doi: 10.1016/j.jallcom.2015.09.187
    [12]
    M.N. Iliev, M.V. Abrashev, A.P. Litvinchuk, V.G. Hadjiev, H. Guo, and A. Gupta, Raman spectroscopy of ordered double perovskite La2CoMnO6 thin films, Phys. Rev. B, 75(2007), No. 10, art. No. 104118. doi: 10.1103/PhysRevB.75.104118
    [13]
    P. Barrozo, N.O. Moreno, and J. Albino Aguiar, Ferromagnetic cluster on La2FeMnO6, Adv. Mater. Res., 975(2014), p. 122. doi: 10.4028/www.scientific.net/AMR.975.122
    [14]
    D.N. Singh, T.P. Sinha, and D.K. Mahato, Electric modulus, scaling and ac conductivity of La2CuMnO6 double perovskite, J. Alloys. Compd., 729(2017), p. 1226. doi: 10.1016/j.jallcom.2017.09.241
    [15]
    M.T. Anderson and K.R. Poeppelmeier, Lanthanum copper tin oxide (La2CuSnO6): A new perovskite-related compound with an unusual arrangement of B cations, Chem. Mater., 3(1991), No. 3, p. 476. doi: 10.1021/cm00015a022
    [16]
    R.S. Hu, R.R. Ding, J. Chen, J.A. Hu, and Y.L. Zhang, Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion, Catal. Commun., 21(2012), p. 38. doi: 10.1016/j.catcom.2012.01.008
    [17]
    J. Chen, Synthesis and Catalytic Activities of Copper Series Rare Earth Double Perovskite-Type Catalysts for Methane Combustion [Dissertation], Inner Mongolia University, 2011.
    [18]
    J. Singh, U.K. Goutam, and A. Kumar, Hydrothermal synthesis and electrochemical performance of nanostructured cobalt free La2CuMnO6, Solid State Sci., 95(2019), art. No. 105927. doi: 10.1016/j.solidstatesciences.2019.06.016
    [19]
    H. Kozuka, K. Ohbayashi, and K. Koumoto, Electronic conduction in La-based perovskite-type oxides, Sci. Technol. Adv. Mater., 16(2015), No. 2, art. No. 026001. doi: 10.1088/1468-6996/16/2/026001
    [20]
    A. Kostopoulou, E. Kymakis, and E. Stratakis, Perovskite nanostructures for photovoltaic and energy storage devices, J. Mater. Chem. A, 6(2018), No. 21, p. 9765. doi: 10.1039/C8TA01964A
    [21]
    H.S. Nan, X.Y. Hu, and H.W. Tian, Recent advances in perovskite oxides for anion-intercalation super-capacitor: A review, Mater. Sci. Semicond. Process., 94(2019), p. 35. doi: 10.1016/j.mssp.2019.01.033
    [22]
    J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, and K.J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes, Nat. Mater., 13(2014), No. 7, p. 726. doi: 10.1038/nmat4000
    [23]
    X.Q. Lang, H.Y. Mo, X.Y. Hu, and H.W. Tian, Supercapacitor performance of perovskite La1–xSrxMnO3, Dalton Trans., 46(2017), No. 40, p. 13720. doi: 10.1039/C7DT03134C
    [24]
    Y. Cao, B.P. Lin, Y. Sun, H. Yang, and X.Q. Zhang, Sr-doped lanthanum nickelate nano-fibers for high energy density, Electrochim. Acta, 174(2015), p. 41. doi: 10.1016/j.electacta.2015.05.131
    [25]
    N. Arjun, G.T. Pan, and T.C.K. Yang, The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications, Results Phys., 7(2017), p. 920. doi: 10.1016/j.rinp.2017.02.013
    [26]
    S. Hussain, M.S. Javed, N. Ullah, A. Shaheen, N. Aslam, I. Ashraf, Y. Abbas, M.S. Wang, G.W. Liu, and G.J. Qiao, Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications, Ceram. Int., 45(2019), No. 12, p. 15164. doi: 10.1016/j.ceramint.2019.04.258
    [27]
    M. Alam, K. Karmakar, M. Pal, and K. Mandal, Electrochemical supercapacitor based on double perovskite Y2NiMnO6 nanowires, RSC Adv., 6(2016), No. 115, p. 114722. doi: 10.1039/C6RA23318J
    [28]
    J. Fu, H.Y. Zhao, J.R. Wang, Y. Shen, and M. Liu, Preparation and electrochemical performance of double perovskite La2CoMnO6 nano-fibers, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 950. doi: 10.1007/s12613-018-1644-1
    [29]
    Y.B. Wu, J. Bi, and B.B. Wei, Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nano-fibers, Acta Phys. Chim. Sin., 31(2015), No. 2, p. 315. doi: 10.3866/PKU.WHXB201412164
    [30]
    J. Singh and A. Kumar, Facile wet chemical synthesis and electrochemical behavior of La2FeCoO6 nano-crystallites, Mater. Sci. Semicond. Process., 99(2019), p. 8. doi: 10.1016/j.mssp.2019.04.007
    [31]
    Y. Liu, Z.B. Wang, J.P. Marcel Veder, Z.Y. Xu, Y.J. Zhong, W. Zhou, M.O. Tade, S.B. Wang, and Z.P. Shao, Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudo-capacitive oxygen‐anion intercalation, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702604. doi: 10.1002/aenm.201702604
    [32]
    Z.Y. Xu, Y. Liu, W. Zhou, M.O. Tade, and Z.P. Shao, B-site cation-ordered double-perovskite oxide as an outstanding electrode material for super-capacitive energy storage based on the anion intercalation mechanism, ACS Appl. Mater. Interfaces, 10(2018), No. 11, p. 9415. doi: 10.1021/acsami.7b19391
    [33]
    M.A. Bavio, J.E. Tasca, G.G. Acosta, and A.E. Lavat, La2NiMnO6 double perovskite nanostructure prepared by citrate route for supercapacitors, Matéria (Rio de Janeiro), 23(2018), No. 2, art. No. art. No. 12132. doi: 10.1590/s1517-707620180002.0466
    [34]
    Z.H. Wang, Y.H. Liu, Y.Q. Chen, L. Yang, Y. Wang, and M.R. Wei, A-site cation-ordered double perovskite PrBaCo2O5+δ oxide as an anion-inserted pseudocapacitor electrode with outstanding stability, J. Alloys Compd., 810(2019), art. No. 151830. doi: 10.1016/j.jallcom.2019.151830
    [35]
    J. Singh, A. Kumar, U.K. Goutam, and A. Kumar, Microstructure and electrochemical performance of La2ZnMnO6 nanoflakes synthesized by facile hydrothermal route, Appl. Phys. A, 126(2020), art. No. art. No. 11. doi: 10.1007/s00339-019-3195-3
    [36]
    F.N. Mansoorie, J. Singh, and A. Kumar, Wet chemical synthesis and electrochemical performance of novel double perovskite Y2CuMnO6 nanocrystallites, Mater. Sci. Semicond. Process., 107(2020), art. No. 104826. doi: 10.1016/j.mssp.2019.104826
    [37]
    J. Singh and A. Kumar, Solvothermal synthesis dependent structural, morphological and electrochemical behaviour of mesoporous nanorods of Sm2NiMnO6, Ceram. Int., 46(2020), No. 8, p. 11041. doi: 10.1016/j.ceramint.2020.01.122
    [38]
    P. Asen and S. Shahrokhian, A high performance supercapacitor based on graphene/polypyrrole/Cu2O–Cu(OH)2 ternary nanocomposite coated on nickel foam, J. Phys. Chem. C, 121(2017), No. 12, p. 6508. doi: 10.1021/acs.jpcc.7b00534
    [39]
    S. Kerli, Synthesis, characterization and supercapacitive performances of yttrium doped cobalt oxide films, J. Korean Phys. Soc., 71(2017), No. 7, p. 404. doi: 10.3938/jkps.71.404
    [40]
    Q.Q. Wang, L.P. Ma, L.C. Wang, and D.D. Wang, Mechanisms for enhanced catalytic performance for NO oxidation over La2CoMnO6 double perovskite by A-site or B-site doping: Effects of the B-site ionic magnetic moments, Chem. Eng. J., 372(2019), p. 728. doi: 10.1016/j.cej.2019.04.178
    [41]
    A.A. Kumar, A. Kumar, and J.K. Quamara, Cetyltriammonium bromide assisted synthesis of lanthanum containing barium stannate nanoparticles for application in dye sensitized solar cells, Phys. Status Solidi A, 215(2018), No. 6, art. No. 1700723. doi: 10.1002/pssa.201700723
    [42]
    A.A. Kumar, J. Singh, D.S. Rajput, A. Placke, A. Kumar, and J. Kumar, Facile wet chemical synthesis of Er3+/Yb3+ co-doped BaSnO3 nano-crystallites for dye-sensitized solar cell application, Mater. Sci. Semicond. Process., 83(2018), p. 83. doi: 10.1016/j.mssp.2018.04.023
    [43]
    Y. Yu, W.Y. Gao, Z.X. Shen, Q. Zheng, H. Wu, X. Wang, W.G. Song, and K.J. Ding, A novel Ni3N/graphene nano-composite as supercapacitor electrode material with high capacitance and energy density, J. Mater. Chem. A, 3(2015), No. 32, p. 16633. doi: 10.1039/C5TA03830H
    [44]
    S. Thirumalairajan, K. Girija, V. Ganesh, D. Mangalaraj, C. Viswanathan, and N. Ponpandian, Novel synthesis of LaFeO3 nanostructure dendrites: A systematic investigation of growth mechanism, properties, and bio-sensing for highly selective determination of neurotransmitter compounds, Cryst. Growth Des., 13(2013), No. 1, p. 291. doi: 10.1021/cg3014305
    [45]
    P. Burroughs, A. Hamnett, A.F. Orchard, and G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc. Dalton Trans., (1976), No. 17, p. 1686. doi: 10.1039/dt9760001686
    [46]
    R.P. Vasquez, X-ray photoemission measurements of La1–xCaxCoO3 (x = 0, 0. 5), Phys. Rev. B, 54(1996), No. 21, p. 14938. doi: 10.1103/PhysRevB.54.14938
    [47]
    K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, and T. Alagesan, Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode, Ceram. Int., 44(2018), No. 16, p. 20075. doi: 10.1016/j.ceramint.2018.07.282
    [48]
    H. Chen, L.F. Hu, M. Chen, Y. Yan, and L.M. Wu, Nickel–cobalt layered double hydroxide nanosheets for high‐performance supercapacitor electrode materials, Adv. Funct. Mater., 24(2014), No. 7, p. 934. doi: 10.1002/adfm.201301747
    [49]
    F.M.F. De Groot, M. Abbate, J. Van Elp, G.A. Sawatzky, Y.J. Ma, C.T. Chen, and F. Sette, Oxygen 1s and cobalt 2p X-ray absorption of cobalt oxides, J. Phys.:Condens. Matter, 5(1993), No. 14, p. 2277. doi: 10.1088/0953-8984/5/14/023
    [50]
    Z.J. Li, W.Y. Zhang, C.S. Yuan, and Y.L. Su, Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties, RSC Adv., 7(2017), No. 21, p. 12931. doi: 10.1039/C6RA27423D
    [51]
    J.F. Li, X.R. Hu, D. D.Chen, J. Gu, and Q.S. Wu, Facile synthesis of superthin Co3O4 porous nanoflake for stable electrochemical supercapacitor, ChemistrySelect, 3(2018), No. 33, p. 9622. doi: 10.1002/slct.201802131
    [52]
    X.F. Lu, D.J. Wu, R.Z. Li, Q. Li, S.H. Ye, Y.X. Tong, and G.R. Li, Hierarchical NiCo2O4 nano-sheets@ hollow micro-rod arrays for high-performance asymmetric super-capacitors, J. Mater. Chem. A, 2(2014), No. 13, p. 4706. doi: 10.1039/C3TA14930G
    [53]
    C.Q. Dong, Y. Wang, J.L. Xu, G.H. Cheng, W.F. Yang, T.Y. Kou, Z.H. Zhang, and Y. Ding, 3D binder-free Cu2O@Cu nano-needle arrays for high-performance asymmetric super capacitors, J. Mater. Chem. A, 2(2014), No. 43, p. 18229. doi: 10.1039/C4TA04329D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1606) PDF Downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return