L. Romero-Reséndiz, A. Flores-Rivera, I.A. Figueroa, C. Braham, C. Reyes-Ruiz, I. Alfonso,  and G. González, Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 801-808. https://doi.org/10.1007/s12613-020-2017-0
Cite this article as:
L. Romero-Reséndiz, A. Flores-Rivera, I.A. Figueroa, C. Braham, C. Reyes-Ruiz, I. Alfonso,  and G. González, Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 801-808. https://doi.org/10.1007/s12613-020-2017-0
Research Article

Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy

+ Author Affiliations
  • Corresponding author:

    G. González    E-mail: joseggr@unam.mx

  • Received: 23 November 2019Revised: 10 February 2020Accepted: 12 February 2020Available online: 20 February 2020
  • To produce a highly refined microstructure, several metals or alloys have been processed via equal-channel angular pressing (ECAP). In this work, the mechanical and microstructural changes of the 5083 aluminum alloy in H11 condition after processed by two ECAP passes were investigated. An ECAP H13 steel die with an inner angle (α) of 120° and outer curvature (β) of 20° was used. The microstructural changes were associated with the loss of texture symmetry. The morphologies of the Mg2Si and α-Al(Mn,Fe)Si precipitates for the sample at the initial condition were similar to those subjected to two ECAP passes. The peak broadening measured by X-ray diffraction revealed an increment of both grain refinement and microstrain. After the second extrusion pass, the hardness increased by 62% compared with the initial condition. Moreover, the heterogeneous hardness behavior was compatible with a highly localized dislocation density. After two ECAP passes, shear parallel bands were observed to be at nearly 45° to the extrusion direction. The evaluation of first-order residual stress as a function of the depth of the analyzed sample displayed compressive or tensile values, depending on the measured face. With the plastic deformation applied, the first and second-order residual stresses exhibited significant increment. Williamson-Hall plots showed positive slopes, indicating an increment in the microstrain.

  • loading
  • [1]
    T.L. Dickerson and J. Przydatek, Fatigue of friction stir welds in aluminum alloys that contain root flaws, Int. J. Fatigue, 25(2003), No. 12, p. 1399. doi: 10.1016/S0142-1123(03)00060-4
    [2]
    T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, and K. Higashi, Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 344. doi: 10.1016/j.msea.2006.12.079
    [3]
    M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083, Mater. Sci. Eng. A, 561(2013), p. 145. doi: 10.1016/j.msea.2012.11.010
    [4]
    G.E. Totten and D.S. MacKenzie, Handbook of Aluminum: Vol. 1 Physical Metallurgy and Processes, CRC press, Boca Raton, 2003.
    [5]
    Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties, Metall. Mater. Trans. A, 31(2000), p. 691. doi: 10.1007/s11661-000-0011-8
    [6]
    K.T. Park, S.H. Myung, D.H. Shin, and C.S. Lee, Size and distribution of particles and voids pre-existing in equal channel angular pressed 5083 Al alloy: Their effect on cavitation during low-temperature superplastic deformation, Mater. Sci. Eng. A, 371(2004), No. 1-2, p. 178. doi: 10.1016/j.msea.2003.11.042
    [7]
    S.Y. Chang, B.D. Ahn, S.K. Hong, S. Kamado, Y. Kojima, and D.H. Shin, Tensile deformation characteristics of a nano-structured 5083 Al alloy, J. Alloys Compd., 386(2005), No. 1-2, p. 197. doi: 10.1016/j.jallcom.2004.03.148
    [8]
    J.C. Lee, S.H. Lee, S.W. Kim, D.Y. Hwang, D.H. Shin, and S.W. Lee, The thermal behavior of aluminum 5083 alloys deformed by equal channel angular pressing, Thermochim. Acta, 499(2010), No. 1-2, p. 100. doi: 10.1016/j.tca.2009.11.008
    [9]
    P. Fernández, G. Bruno, and G. González-Doncel, Macro and micro-residual stress distribution in 6061 Al−15 vol.% SiCw under different heat treatment conditions, Compos. Sci. Technol., 66(2006), No. 11-12, p. 1738. doi: 10.1016/j.compscitech.2005.11.006
    [10]
    S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang, Microstructural evolution and mechanical properties of Cu−Al alloys subjected to equal channel angular pressing, Acta Mater., 57(2009), No. 5, p. 1586. doi: 10.1016/j.actamat.2008.12.002
    [11]
    Y.G. Kim, Y.G. Ko, D.H. Shin, and S. Lee, Effect of equal-channel angular pressing routes on high-strain-rate deformation behavior of ultra-fine-grained aluminum alloy, Acta Mater., 58(2010), No. 7, p. 2545. doi: 10.1016/j.actamat.2009.12.041
    [12]
    Y. Iwahashi, J.T. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Mater., 35(1996), No. 2, p. 143. doi: 10.1016/1359-6462(96)00107-8
    [13]
    G. Gonzalez, C. Braham, J.L. Lebrun, Y. Chastel, W. Seiler, and I.A. Figueroa, Microstructure and texture of Al2SixSn (x = 0, 4, 8 mass%) alloys processed by equal channel angular pressing, Mater. Trans., 53(2012), No. 7, p. 1234.
    [14]
    O. Engler, Z.S. Liu, and K. Kuhnke, Impact of homogenization on particles in the Al−Mg−Mn alloy AA 5454 − Experiment and simulation, J. Alloys Compd., 560(2013), p. 111. doi: 10.1016/j.jallcom.2013.01.163
    [15]
    J.E. Tibballs, J.A. Horst, and C.J. Simensen, Precipitation of α-Al(Fe,Mn)Si from the melt, J. Mater. Sci., 36(2001), p. 937. doi: 10.1023/A:1004815621313
    [16]
    J. Lacaze, L. Eleno, and B. Sundman, Thermodynamic assessment of the aluminum corner of the Al−Fe−Mn−Si system, Metall. Mater. Trans. A, 41(2010), p. 2208. doi: 10.1007/s11661-010-0263-x
    [17]
    O. Engler and S. Miller-Jupp, Control of second-phase particles in the Al−Mg−Mn alloy AA 5083, J. Alloys Compd., 689(2016), p. 998. doi: 10.1016/j.jallcom.2016.08.070
    [18]
    G.S. Yi, B.H. Sun, J.D. Poplawsky, Y.K. Zhu, and M.L. Free, Investigation of pre-existing particles in Al 5083 alloys, J. Alloys Compd., 740(2018), p. 461. doi: 10.1016/j.jallcom.2017.12.329
    [19]
    M. Kawasaki, Z. Horita, and T.G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP, Mater. Sci. Eng. A, 524(2009), No. 1-2, p. 143. doi: 10.1016/j.msea.2009.06.032
    [20]
    T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 3. doi: 10.1016/j.msea.2006.02.473
    [21]
    I.J. Beyerlein and L.S. Tóth, Texture evolution in equal-channel angular extrusion, Prog. Mater. Sci., 54(2009), No. 4, p. 427. doi: 10.1016/j.pmatsci.2009.01.001
    [22]
    A.A. Tiamiyu, R. Basu, A.G. Odeshi, and J.A. Szpunar, Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading, Mater. Sci. Eng. A, 636(2015), p. 379. doi: 10.1016/j.msea.2015.03.113
    [23]
    S.N. Alhajeri, N. Gao, and T.G. Langdon, Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP, Mater. Sci. Eng. A, 528(2011), No. 10-11, p. 3833. doi: 10.1016/j.msea.2011.01.074
    [24]
    Y.T. Zhu, H.G. Jiang, J.Y. Haung, and T.C. Lowe, A new route to bulk nanostructured metals, Metall. Mater. Trans. A, 32(2001), No. 6, p. 1559. doi: 10.1007/s11661-001-0245-0
    [25]
    D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951.
    [26]
    P.G. Sanders, J.A. Eastman, and J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater., 45(1997), No. 10, p. 4019. doi: 10.1016/S1359-6454(97)00092-X
    [27]
    D.P. Braga, D.C.C. Magalhães, A.M. Kliauga, C.A.D. Rovere, and V.L. Sordi, Microstructure, mechanical behavior and stress corrosion cracking susceptibility in ultrafine-grained Al−Cu alloy, Mater. Sci. Eng. A, 773(2020), art. No. 138865.
    [28]
    J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, M.Z. Ge, Y.L. Lu, and X.L. Li, Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints, Mater. Sci. Eng. A, 647(2015), p. 7. doi: 10.1016/j.msea.2015.08.084
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Share Article

    Article Metrics

    Article Views(1711) PDF Downloads(56) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return