Peng-yu Wen, Jian-sheng Han, Hai-wen Luo,  and Xin-ping Mao, Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1234-1243. https://doi.org/10.1007/s12613-020-2023-2
Cite this article as:
Peng-yu Wen, Jian-sheng Han, Hai-wen Luo,  and Xin-ping Mao, Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1234-1243. https://doi.org/10.1007/s12613-020-2023-2
Research Article

Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel

+ Author Affiliations
  • Corresponding author:

    Hai-wen Luo    E-mail: luohaiwen@ustb.edu.cn

  • Received: 1 December 2019Revised: 13 February 2020Accepted: 17 February 2020Available online: 20 February 2020
  • Flash processing (FP) has attracted considerable attention due to its high efficiency, economic advantages, and the extraordinary opportunity if offers to improve the mechanical properties of steel. In this study, we investigated the influences of FP on the recrystallization (REX) behavior and mechanical performance of cold-rolled IF steel. Using a thermomechanical simulator, we performed both single-stage FPs, at heating rates of 200°C/s and 500°C/s, and two-stage FP, with an initial preheating to 400°C at a rate of 5°C/s and then to peak temperatures at a rate of 200°C/s. In comparison to continuous annealing (CA), single-stage FP can effectively refine the recrystallized grain sizes and produce a similar or even sharper γ (ND (normal direction)//{111}) texture component. In particular, the heating rate of 500°C/s led to an increase in the yield strength of about 23.2% and a similar ductility. In contrast, the two-stage FP resulted in a higher REX temperature as well as a certain grain refinement due to the stored strain energy, i.e., the driving force of REX, which was largely consumed during preheating. Furthermore, both stronger {110}<110>and weaker γ texture components appeared in the two-stage FP and were believed to be responsible for the early necking and deterioration in ductility.

  • loading
  • [1]
    R.K. Ray, J.J. Jonas, and R.E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels, Int. Metall. Rev., 39(1994), No. 4, p. 129. doi: 10.1179/imr.1994.39.4.129
    [2]
    I. Samajdar, B. Verlinden, L. Kestens, and P. Van Houtte, Physical parameters related to the developments of recrystallization textures in an ultra low carbon steel, Acta Mater., 47(1998), No. 1, p. 55. doi: 10.1016/S1359-6454(98)00337-1
    [3]
    Y. Hayakawa and J.A. Szpunar, Modeling of texture development during recrystallization of interstitial free steel, Acta Mater., 45(1997), No. 6, p. 2425. doi: 10.1016/S1359-6454(96)00353-9
    [4]
    C.Y. Qiu, L. Li, L.L. Hao, J.G. Wang, X. Zhou, and Y.L. Kang, Effect of continuous annealing temperature on microstructure and properties of ferritic rolled interstitial-free steel, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 536. doi: 10.1007/s12613-018-1600-0
    [5]
    Y.F. Shen, W.Y. Xue, Y.D. Wang, Y.D. Liu, and L. Zuo, Tensile behaviors of IF steel with different cold-rolling reductions, Mater. Sci. Eng. A, 496(2008), No. 1-2, p. 383. doi: 10.1016/j.msea.2008.06.017
    [6]
    R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, and Y. Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 178. doi: 10.1007/s12613-019-1722-z
    [7]
    R. Wang, Y.P. Bao, Y.H. Li, Z.J. Yan, D.Z. Li, and Y. Kang, Influence of metallurgical processing parameters on defects in cold-rolled steel sheet caused by inclusions, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 440. doi: 10.1007/s12613-019-1751-7
    [8]
    L. Zhang, Z. Chen, Y.H. Wang, G.Q. Ma, T.L. Huang, G.L. Wu, and D.J. Jensen, Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure, Scripta Mater., 141(2017), p. 111. doi: 10.1016/j.scriptamat.2017.06.044
    [9]
    M.X. Yang, Y. Pan, F.P. Yuan, Y.T. Zhu, and X.L. Wu, Back stress strengthening and strain hardening in gradient structure, Mater. Res. Lett., 4(2016), No. 3, p. 145. doi: 10.1080/21663831.2016.1153004
    [10]
    R. Saha and R.K. Ray, Formation of nano- to ultrafine grains in a severely cold rolled interstitial free steel, Mater. Sci. Eng. A, 459(2007), No. 1-2, p. 223. doi: 10.1016/j.msea.2007.01.068
    [11]
    Q.G. Meng, J. Li, and H.X. Zheng, High-efficiency fast-heating annealing of a cold-rolled dual-phase steel, Mater. Des., 58(2014), p. 194. doi: 10.1016/j.matdes.2014.01.055
    [12]
    F.M. Castro Cerda, C. Goulas, I. Sabirov, L.A.I. Kestens, and R.H. Petrov, The effect of the pre-heating stage on the microstructure and texture of a cold rolled FeCMnAlSi steel under conventional and ultrafast heating, Mater. Charact., 130(2017), p. 188. doi: 10.1016/j.matchar.2017.06.010
    [13]
    M. Atkinson, Bifurcation of thermal restoration processes in deformed iron and steel, Mater. Sci. Eng. A, 262(1999), No. 1-2, p. 33. doi: 10.1016/S0921-5093(98)01031-4
    [14]
    M. Atkinson, On the credibility of ultra rapid annealing, Mater. Sci. Eng. A, 354(2003), No. 1-2, p. 40. doi: 10.1016/S0921-5093(02)00830-4
    [15]
    D. Muljono, M. Ferry, and D.P. Dunne, Influence of heating rate on anisothermal recrystallization in low and ultra-low carbon steels, Mater. Sci. Eng. A, 303(2001), No. 1-2, p. 90. doi: 10.1016/S0921-5093(00)01882-7
    [16]
    M. Ferry, D. Muljono, and D.P. Dunne, Recrystallization kinetics of low and ultra low carbon steels during high-rate annealing, ISIJ Int., 41(2001), No. 9, p. 1053. doi: 10.2355/isijinternational.41.1053
    [17]
    F.M. Castro Cerda, F. Vercruysse, T.N. Minh, L. Kestens, A. Monsalve, and R. Petrov, The effect of heating rate on the recrystallization behavior in cold rolled ultra low carbon steel, Steel Res. Int., 88(2017), No. 1, p. 1600351. doi: 10.1002/srin.201600351
    [18]
    L. Kestens, A.C.C. Reis, W. Kaluba, and Y. Houbaert, Grain refinement and texture change in interstitial free steels after severe rolling and ultra-short annealing, Mater. Sci. Forum, 467-470(2004), p. 287. doi: 10.4028/www.scientific.net/MSF.467-470.287
    [19]
    A.C.C. Reis, L. Bracke, R. Petrov, W.J. Kaluba, and L. Kestens, Grain refinement and texture change in interstitial free steels after severe rolling and ultra-short annealing, ISIJ Int., 43(2003), No. 8, p. 1260. doi: 10.2355/isijinternational.43.1260
    [20]
    Q.Z. Chen, M.Z. Quadir, and B.J. Duggan, Shear band formation in IF steel during cold rolling at medium reduction levels, Philos. Mag., 86(2006), No. 23, p. 3633. doi: 10.1080/14786430600728638
    [21]
    Z.Y. Hou, Y.B Xu, and D. Wu, Recrystallization of ultra-low carbon steel sheet after ultra-rapid annealing, Acta Metall. Sin., 48(2012), No. 9, p. 1057. doi: 10.3724/SP.J.1037.2012.00115
    [22]
    B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen, Microstructural evolution of IF-steel during cold rolling, Acta Mater., 52(2004), No. 4, p. 1069. doi: 10.1016/j.actamat.2003.10.040
    [23]
    S. Dziaszyk, E.J. Payton, F. Friedel, V. Marx, and G. Eggeler, On the characterization of recrystallized fraction using electron backscatter diffraction: A direct comparison to local hardness in an IF steel using nanoindentation, Mater. Sci. Eng. A, 527(2010), No. 29-30, p. 7854. doi: 10.1016/j.msea.2010.08.063
    [24]
    J.L. Bocos, E. Novillo, M.M. Petite, A. Iza-Mendia, and I. Gutierrez, Aspects of orientation-dependent grain growth in extra-low carbon and interstitial-free steels during continuous annealing, Metall. Mater. Trans. A, 34(2003), No. 3, p. 827. doi: 10.1007/s11661-003-0117-x
    [25]
    A. Smith, H.W. Luo, D.N. Hanlon, J. Sietsma, and S. Van Der Zwaag, Recovery processes in the ferrite phase in C–Mn steel, ISIJ Int., 44(2004), No. 7, p. 1188. doi: 10.2355/isijinternational.44.1188
    [26]
    H.W. Luo, J. Sietsma, and S. Van Der Zwaag, Effect of inhomogeneous deformation on the recrystallization kinetics of deformed metals, ISIJ Int., 44(2004), No. 11, p. 1931. doi: 10.2355/isijinternational.44.1931
    [27]
    H.W. Luo, Comments on “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning” by S. Lee, S.J. Lee and B.C. De Cooman, Scripta Mater., 66(2012), No. 10, p. 829. doi: 10.1016/j.scriptamat.2012.01.017
    [28]
    F. Yang, H.W. Luo, E.X. Pu, S.L. Zhang, and H. Dong, On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity, Int. J. Plast., 103(2018), p. 188. doi: 10.1016/j.ijplas.2018.01.010
    [29]
    R. Saha and R.K. Ray, Texture and grain growth characteristics in a boron added interstitial free steel after severe cold rolling and annealing, Mater. Sci. Eng. A, 527(2010), No. 7-8, p. 1882. doi: 10.1016/j.msea.2009.11.019
    [30]
    R. Saha and R.K. Ray, Effect of severe cold rolling and annealing on the development of texture, microstructure and grain boundary character distribution in an interstitial-free (IF) steel, ISIJ Int., 48(2008), No. 7, p. 976. doi: 10.2355/isijinternational.48.976
    [31]
    K. Shen and B.J. Duggan, Microbands and crystal orientation metastability in cold rolled interstitial-free steel, Acta Mater., 55(2007), No. 4, p. 1137. doi: 10.1016/j.actamat.2006.06.056
    [32]
    L. Kestens and J.J. Jonas, Modeling texture change during the static recrystallization of interstitial-free steels, Metall. Mater. Trans. A, 27(1996), No. 1, p. 155. doi: 10.1007/BF02647756
    [33]
    R.L. Every and M. Hatherly, Oriented nucleation in low-carbon steels, Texture,Stress,Micro., 1(1974), art. No. 380237.
    [34]
    I.L. Dillamore, C.J.E. Smith, and T.W. Watson, Oriented nucleation in the formation of annealing textures in iron, Met. Sci. J., 1(1967), No. 1, p. 49. doi: 10.1179/msc.1967.1.1.49
    [35]
    K. Verbeken, L. Kestens, and J.J. Jonas, Microtextural study of orientation change during nucleation and growth in a cold rolled ULC steel, Scripta Mater., 48(2003), No. 10, p. 1457. doi: 10.1016/S1359-6462(03)00078-2
    [36]
    D. Vanderschueren, N. Yoshinaga, and K. Koyama, Recrystallisation of Ti IF steel investigated with electron backscattering pattern (EBSP), ISIJ Int., 36(1996), No. 8, p. 1046. doi: 10.2355/isijinternational.36.1046
    [37]
    W.B. Hutchinson, Development of textures in recrystallization, Met. Sci., 8(1974), No. 1, p. 185. doi: 10.1179/msc.1974.8.1.185
    [38]
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, 2004, p. 25.
    [39]
    C.I. Xie, E. Nakamachi, and X.H. Dong, Study of texture effect on strain localization on bcc steel sheets, Acta Mech. Solida Sin., 13(2000), No. 2, p. 95.
    [40]
    C.L. Xie and E. Nakamachi, The effect of crystallographic textures on the formability of high-strength steel sheets, J. Mater. Process. Technol., 122(2002), No. 1, p. 104. doi: 10.1016/S0924-0136(01)01234-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2185) PDF Downloads(60) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return