Xi-cong Ye, Tong Wang, Zhang-yang Xu, Chang Liu, Hai-hua Wu, Guang-wei Zhao, and Dong Fang, Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1326-1331. https://doi.org/10.1007/s12613-020-2024-1
Cite this article as:
Xi-cong Ye, Tong Wang, Zhang-yang Xu, Chang Liu, Hai-hua Wu, Guang-wei Zhao, and Dong Fang, Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1326-1331. https://doi.org/10.1007/s12613-020-2024-1
Research Article

Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys

+ Author Affiliations
  • Corresponding authors:

    Xi-cong Ye    E-mail: yexc@ctgu.edu.cn

    Dong Fang    E-mail: hill988@163.com

  • Received: 6 December 2019Revised: 16 February 2020Accepted: 17 February 2020Available online: 20 February 2020
  • We prepared (CuCoFeNi)Tix (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) high-entropy alloys (HEAs) by vacuum arc melting and then investigated the effects of Ti on their microstructure and mechanical properties. When x was inreased to 0.6, the structure of the alloy transformed from their initial single face-centered cubic (fcc) structure into fcc+Laves mixed structure. The Laves phase was found to comprise Fe2Ti and be mainly distributed in the dendrite region. With increasing Ti content, both the Laves phase and the hardness of the alloy increased, whereas its yield and fracture strengths first increased and then decreased, reaching their highest value when x was 0.8. The (CuCoFeNi)Ti0.8 alloy exhibited the best overall mechanical properties, with yield and fracture strengths of 949.7 and 1723.4 MPa, respectively, a fracture strain of 27.92%, and a hardness of HV 461.6.

  • loading
  • [1]
    J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35(2004), No. 8, p. 2533. doi: 10.1007/s11661-006-0234-4
    [2]
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
    [3]
    B. Cantor, K.B. Kim, and P.J. Warren, Novel multicomponent amorphous alloys, J. Metastable Nanocryst. Mater., 13(2002), p. 27.
    [4]
    B. Cantor, Multicomponent and high entropy alloys, Entropy, 16(2014), No. 9, p. 4749. doi: 10.3390/e16094749
    [5]
    N. Gao, D.H. Lu, Y.Y. Zhao, X.W. Liu, G.H. Liu, Y. Wu, G. Liu, Z.T. Fan, Z.P. Lu, and E.P. George, Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation, J. Alloys Compd., 792(2019), p. 1028. doi: 10.1016/j.jallcom.2019.04.121
    [6]
    J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater., 31(2006), No. 6, p. 633. doi: 10.3166/acsm.31.633-648
    [7]
    Z.B. Cai, G. Jin, X.F. Cui, Y. Li, Y. Fan, and J.H. Song, Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering, Vacuum, 124(2016), p. 5. doi: 10.1016/j.vacuum.2015.11.007
    [8]
    Y.X. Chen, S. Zhu, X.M. Wang, B.J. Yang, G.F. Han, and L. Qiu, Microstructure evolution and strengthening mechanism of Al0.4CoCu0.6NiSix, (x = 0–0.2) high entropy alloys prepared by vacuum arc melting and copper injection fast solidification, Vacuum, 150(2018), p. 84. doi: 10.1016/j.vacuum.2018.01.031
    [9]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [10]
    Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys, Mater. Sci. Eng. A, 454-455(2007), p. 260. doi: 10.1016/j.msea.2006.11.049
    [11]
    Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904. doi: 10.1063/1.2734517
    [12]
    Y.P. Lu, Y. Dong, X.Z. Gao, L. Jiang, Z.N. Chen, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Mater., 124(2017), p. 143. doi: 10.1016/j.actamat.2016.11.016
    [13]
    C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268(2010), No. 5-6, p. 653. doi: 10.1016/j.wear.2009.10.013
    [14]
    Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel, Corros. Sci., 47(2005), No. 9, p. 2257. doi: 10.1016/j.corsci.2004.11.008
    [15]
    A.Y. Churyumov, A.V. Pozdniakov, A.I. Bazlov, H. Mao, V.I. Polkin, and D.V. Louzguine-Luzgin, Effect of Nb addition on microstructure and thermal and mechanical properties of Fe–Co–Ni–Cu–Cr multiprincipal-element (high-entropy) alloys in as-cast and heat-treated state, JOM, 71(2019), No. 10, p. 3481. doi: 10.1007/s11837-019-03644-z
    [16]
    C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd., 490(2010), No. 1-2, p. 160. doi: 10.1016/j.jallcom.2009.10.088
    [17]
    C.D. Gómez-Esparza, K. Campos-Venegas, O. Solis-Canto, J.M. Alvarado-Orozco, J. MuñozSaldaña, J. M. Herrera-Ramírez, and R. Martínez-Sánchez, Nanohardness and microstructure of NiCoAlFeCu and NiCoAlFeCuCr alloys produced by mechanical alloying, Microsc. Microanal., 20(2014), No. S3, p. 2106. doi: 10.1017/S1431927614012264
    [18]
    H.M. Ye, W.C. Yang, X.Z. Pang, J.B. Yang, and Y.Z. Zhan, Effect of titanium content on wear resistance of CoCuFeNiVTix high-entropy alloys, J. Guangxi Univ. Nat. Sci. Ed., 42(2017), No. 3, p. 1187.
    [19]
    C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36(2005), No. 4, p. 881. doi: 10.1007/s11661-005-0283-0
    [20]
    G. Qin, S. Wang, R.R. Chen, X. Gong, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys, J. Mater. Sci. Technol., 34(2018), No. 2, p. 365. doi: 10.1016/j.jmst.2017.11.007
    [21]
    A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar, Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix, high entropy alloys, J. Alloys Compd., 748(2018), p. 889. doi: 10.1016/j.jallcom.2018.03.242
    [22]
    X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15(2007), No. 3, p. 357. doi: 10.1016/j.intermet.2006.08.005
    [23]
    Q.C. Fan, B.S. Li, and Y. Zhang, Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys, J. Alloys Compd., 614(2014), p. 203. doi: 10.1016/j.jallcom.2014.06.090
    [24]
    C.Y. Hsu, C.C. Juan, T.S. Sheu, S.K. Chen, and J.W. Yeh, Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys, JOM, 65(2013), No. 12, p. 1840. doi: 10.1007/s11837-013-0753-6
    [25]
    Y. Dong, Y.P. Lu, J.J. Zhang, and T.J. Li, Microstructure and properties of multi-component AlxCoCrFeNiTi0.5 high-entropy alloys, Mater. Sci. Forum, 745-746(2013), p. 775. doi: 10.4028/www.scientific.net/MSF.745-746.775
    [26]
    Z. Chen, W.P. Chen, B.Y. Wu, X.Y. Cao, L.S. Liu, and Z.Q. Fu, Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 648(2015), p. 217. doi: 10.1016/j.msea.2015.08.056
    [27]
    S. Guo, Phase selection rules for cast high entropy alloys: An overview, Mater. Sci. Technol., 31(2015), No. 10, p. 1223. doi: 10.1179/1743284715Y.0000000018
    [28]
    S. Guo and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int., 21(2011), No. 6, p. 433. doi: 10.1016/S1002-0071(12)60080-X
    [29]
    O.N. Senkov and D.B. Miracle, A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys, J. Alloys Compd., 658(2016), p. 603. doi: 10.1016/j.jallcom.2015.10.279
    [30]
    W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang, Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys, J. Alloys Compd., 735(2018), p. 897. doi: 10.1016/j.jallcom.2017.11.075
    [31]
    L. Liu, Y. Zhang, Z.F. Zhao, B. Wang, M.G. Qi, and J. Shang, Microstructure and mechanical properties of AlxCoCuFeNi high entropy alloys, Special Cast. Nonferrous Alloys, 36(2016), No. 6, p. 570.
    [32]
    S.H. Lian, W.Y. Peng, and A.S. Zhang, Research on microstructure and mechanical properties of FeCoNiAlCux high entropy alloys with multi-principal element, Hot Working Technol., 46(2017), No. 12, p. 1.
    [33]
    L. Liu, L.J. He, J.G. Qi, B. Wang, Z.F. Zhao, J. Shang, and Y. Zhang, Effects of Sn element on microstructure and properties of SnxAl2.5FeCoNiCu multi-component alloys, J. Alloys Compd., 654(2016), p. 327. doi: 10.1016/j.jallcom.2015.09.093
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(2779) PDF Downloads(93) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return