Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, and Shu-qiang Jiao, Direct electrochemical N-doping to carbon paper in molten LiCl‒KCl‒Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1687-1694. https://doi.org/10.1007/s12613-020-2026-z
Cite this article as:
Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, and Shu-qiang Jiao, Direct electrochemical N-doping to carbon paper in molten LiCl‒KCl‒Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1687-1694. https://doi.org/10.1007/s12613-020-2026-z
Research Article

Direct electrochemical N-doping to carbon paper in molten LiCl‒KCl‒Li3N

+ Author Affiliations
  • Corresponding authors:

    Ming-yong Wang    E-mail: mywang@ustb.edu.cn

    Shu-qiang Jiao    E-mail: sjiao@ustb.edu.cn

  • Received: 31 December 2019Revised: 16 February 2020Accepted: 17 February 2020Available online: 20 February 2020
  • Graphite materials are widely used as electrode materials for electrochemical energy storage. N-doping is an effective method for enhancing the electrochemical properties of graphite. A novel one-step N-doping method for complete and compact carbon paper was proposed for molten salt electrolysis in the LiCl−KCl−Li3N system. The results show that the degree of graphitization of carbon paper can be improved by the electrolysis of molten salts, especially at 2.0 V. Nitrogen gas was produced at the anode and nitrogen atoms can substitute carbon atoms of carbon paper at different sites to create nitrogen doping during the electrolysis process. The doping content of N in carbon paper is up to 13.0wt%. There were three groups of nitrogen atoms, i.e. quaternary N (N-Q), pyrrolic N (N-5), and pyridinic N (N-6) in N-doping carbon paper. N-doping carbon paper as an Al-ion battery cathode shows strong charge‒recharge properties.

  • loading
  • [1]
    Y.R. Xue, Y.L. Li, J. Zhang, Z.F. Liu, and Y.L. Zhao, 2D graphdiyne materials: Challenges and opportunities in energy field, Sci. China Chem., 61(2018), No. 7, p. 765. doi: 10.1007/s11426-018-9270-y
    [2]
    L.J. Chen, H. Chen, Z. Wang, X.Z. Gong, X.H. Chen, M.Y. Wang, and S.Q. Jiao, Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode, Chem. Eng. J., 363(2019), p. 270. doi: 10.1016/j.cej.2019.01.131
    [3]
    H.B. Wang, C.J. Zhang, Z.H. Liu, L. Wang, P.X. Han, H.X. Xu, K.J. Zhang, S.M. Dong, J.H. Yao, and G.L. Cui, Nitrogen-doped graphene nanosheets with excellent lithium storage properties, J. Mater. Chem., 21(2011), No. 14, p. 5430. doi: 10.1039/c1jm00049g
    [4]
    Y. Mao, H. Duan, B. Xu, L. Zhang, Y.S. Hu, C.C. Zhao, Z.X. Wang, L.Q. Chen, and Y.S. Yang, Lithium storage in nitrogen-rich mesoporous carbon materials, Energ. Environ. Sci., 5(2012), No. 7, p. 7950. doi: 10.1039/c2ee21817h
    [5]
    M.C. Lin, M. Gong, B.G. Lu, Y.P. Wu, D.Y. Wang, M.Y. Guan, M. Angell, C.X. Chen, J. Yang, B.J. Hwang, and H.J. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520(2015), No. 7547, p. 324. doi: 10.1038/nature14340
    [6]
    S. Wang, S.Q. Jiao, W.L. Song, H.S. Chen, J.G. Tu, D.H. Tian, H.D. Jiao, C.P. Fu, and D.N. Fang, A novel dual-graphite aluminum-ion battery, Energy Storage Mater., 12(2018), p. 119. doi: 10.1016/j.ensm.2017.12.010
    [7]
    H.B. Sun, W. Wang, Z.J. Yu, Y. Yuan, S. Wang, and S.Q. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost, Chem. Commun., 51(2015), No. 59, p. 11892. doi: 10.1039/C5CC00542F
    [8]
    Y. Song, S.Q. Jiao, J.G. Tu, J.X. Wang, Y.J. Liu, H.D. Jiao, X.H. Mao, Z.C. Guo, and D.J. Fray, A long-life rechargeable Al ion battery based on molten salts, J. Mater. Chem. A, 5(2017), No. 3, p. 1282. doi: 10.1039/C6TA09829K
    [9]
    Y.Y. Shao, S. Zhang, M.H. Engelhard, G.S. Li, G.C. Shao, Y. Wang, J. Liu, I.A. Aksay, and Y.H. Lin, Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 20(2010), No. 35, p. 7491. doi: 10.1039/c0jm00782j
    [10]
    T.Q. Lin, I.W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, and F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage, Science, 350(2015), No. 6267, p. 1508. doi: 10.1126/science.aab3798
    [11]
    Y.P. Wu, J.H. Zhu, and L. Huang, A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment, Carbon, 143(2019), p. 610. doi: 10.1016/j.carbon.2018.11.053
    [12]
    Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, and Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries, Nature Commun., 9(2018), No. 1, p. 1720. doi: 10.1038/s41467-018-04190-z
    [13]
    H.P. Lei, J.G. Tu, D.H. Tian, and S.Q. Jiao, A nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors, New J. Chem., 42(2018), No. 19, p. 15648. doi: 10.1039/C8NJ02301H
    [14]
    T. Schiros, D. Nordlund, L. Pálová, D. Prezzi, L.Y. Zhao, K.S. Kim, U. Wurstbauer, C. Gutiérrez, D. Delongchamp, C. Jaye, D. Fischer, H. Ogasawara, L.G.M. Pettersson, D.R. Reichman, P. Kim, M.S. Hybertsen, and A.N. Pasupathy, Connecting dopant bond type with electronic structure in N-doped graphene, Nano Lett., 12(2012), No. 8, p. 4025. doi: 10.1021/nl301409h
    [15]
    C.S. Huang, Y.J. Li, N. Wang, Y.R. Xue, Z.C. Zuo, H.B. Liu, and Y.L. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev., 118(2018), No. 16, p. 7744. doi: 10.1021/acs.chemrev.8b00288
    [16]
    J.H. Hou, C.B. Cao, F. Idrees, and X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano, 9(2015), No. 3, p. 2556. doi: 10.1021/nn506394r
    [17]
    G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, and E. Frackowiak, Effect of nitrogen in carbon electrode on the supercapacitor performance, Chem. Phys. Lett., 404(2005), No. 1-3, p. 53. doi: 10.1016/j.cplett.2005.01.074
    [18]
    K.N. Wood, R. O'Hayre, and S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy Environ. Sci., 7(2014), No. 4, p. 1212. doi: 10.1039/C3EE44078H
    [19]
    L.S. Panchokarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv. Mater., 21(2009), No. 46, p. 4726.
    [20]
    X.W. Wang, G.Z. Sun, P. Routh, D.H. Kim, W. Huang, and P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications, Chem. Soc. Rev., 43(2014), No. 20, p. 7067. doi: 10.1039/C4CS00141A
    [21]
    Z.C. Han, J.B. Ge, J. Zhu, M.Y. Wang, and S.Q. Jiao, A convenient electrochemical method for preparing carbon nanotubes filled with amorphous boron, J. Electrochem. Soc., 165(2018), No. 16, p. E879. doi: 10.1149/2.1041816jes
    [22]
    Z.Q. Tan, K. Ni, G.X. Chen, W.C. Zeng, Z.C. Tao, M. Ikram, Q.B. Zhang, H.J. Wang, L.T. Sun, X.J. Zhu, X.J. Wu, H.X. Ji, R.S. Ruoff, and Y.W. Zhu, Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C-60 molecules to obtain superior energy storage, Adv. Mater., 29(2017), No. 8, art. No. 1603414. doi: 10.1002/adma.201603414
    [23]
    W.J. Lee, J. Lim, and S.O. Kim, Nitrogen dopants in carbon nanomaterials: Defects or a new opportunity?, Small Methods, 1(2017), No. 1-2, art. No. 1600014. doi: 10.1002/smtd.201600014
    [24]
    Z. Zhou, X.P. Gao, J. Yan, and D.Y. Song, Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations, Carbon, 44(2006), No. 5, p. 939. doi: 10.1016/j.carbon.2005.10.016
    [25]
    R. Arenal, K. March, C.P. Ewels, X. Rocquefelte, M. Kociak, A. Loiseau, and O. Stephan, Atomic configuration of nitrogen-doped single-walled carbon nanotubes, Nano Lett., 14(2014), No. 10, p. 5509. doi: 10.1021/nl501645g
    [26]
    Y.S. Zhao, J.W. Wan, H.Y. Yao, L.J. Zhang, K.F. Lin, L. Wang, N.L. Yang, D.B. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H.J. Zhao, Y.L. Li, and D. Wang, Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis, Nature Chem., 10(2018), No. 9, p. 924. doi: 10.1038/s41557-018-0100-1
    [27]
    T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai, Y. Harada, M. Saito, M. Oshima, M.I. Trioni, G.F. Tantardini, and J. Nakamura, Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms, Phys. Rev. B, 86(2012), No. 3, art. No. 035436. doi: 10.1103/PhysRevB.86.035436
    [28]
    L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, Boron- and nitrogen-doped carbon nanotubes and graphene, Inorg. Chim. Acta, 363(2010), No. 15, p. 4163. doi: 10.1016/j.ica.2010.07.057
    [29]
    H.P. Lei, J.G. Tu, D.H. Tian, and S.Q. Jiao, Electrochemically Exfoliating graphite cathode to N-doped graphene analogue and its excellent Al storage performance, J. Electrochem. Soc., 166(2019), No. 10, p. A1738. doi: 10.1149/2.0341910jes
    [30]
    Y. Ito, C. Christodoulou, M.V. Nardi, N. Koch, H. Sachdev, and K. Müllen, Chemical vapor deposition of N-doped graphene and carbon films: The role of precursors and gas phase, ACS Nano, 8(2014), No. 4, p. 3337. doi: 10.1021/nn405661b
    [31]
    M. Choucair, P. Thordarson, and J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nature Nanotechnol., 4(2009), No. 1, p. 30. doi: 10.1038/nnano.2008.365
    [32]
    K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C, 113(2009), No. 11, p. 4257. doi: 10.1021/jp900791y
    [33]
    D.H. Deng, X.L. Pan, L. Yu, Y. Cui, Y.P. Jiang, J. Qi, W.X. Li, Q.A. Fu, X.C. Ma, Q.K. Xue, G.Q. Sun, and X.H. Bao, Toward N-doped graphene via solvothermal synthesis, Chem. Mater., 23(2011), No. 5, p. 1188. doi: 10.1021/cm102666r
    [34]
    S.Q. Jiao and H.M. Zhu, Novel metallurgical process for titanium production, J. Mater. Res., 21(2006), No. 9, p. 2172. doi: 10.1557/jmr.2006.0268
    [35]
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361. doi: 10.1038/35030069
    [36]
    L. Kartal, M.B. Daryal, G.K. Şireli, and S. Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258. doi: 10.1007/s12613-019-1867-9
    [37]
    L. Kartal and S. Timur, Direct electrochmical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 992. doi: 10.1007/s12613-019-1821-x
    [38]
    T.H. Okabe, A. Horiuchi, K.T. Jacob, and Y. Waseda, Physiochemical studies of lithium nitride in molten LiCl−KCl, Mater. Trans. Jim, 41(2000), No. 7, p. 822. doi: 10.2320/matertrans1989.41.822
    [39]
    H. Chen, H.Y. Xu, S.Y. Wang, T.Q. Huang, J.B. Xi, S.Y. Cai, F. Guo, Z. Xu, W.W. Gao, and C. Gao, Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life, Sci. Adv., 3(2017), No. 12, p. 8.
    [40]
    S. Wang, Z.J. Yu, J.G. Tu, J.X. Wang, D.H. Tian, Y.J. Liu, and S.Q. Jiao, A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene, Adv. Energy Mater., 6(2016), No. 13, art. No. 1600137. doi: 10.1002/aenm.201600137
    [41]
    A.S. Childress, P. Parajuli, J. Zhu, R. Podila, and A.M. Rao, A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries, Nano Energy, 39(2017), p. 69. doi: 10.1016/j.nanoen.2017.06.038
    [42]
    T.H. Okabe, A. Horiuchi, K.T. Jacob, and Y. Waseda, Electrochemical properties of Li3N dissolved in molten LiCl at 900 K, J. Electrochem. Soc., 148(2001), No. 5, p. E219. doi: 10.1149/1.1365145
    [43]
    T. Goto, K. Toyoura, H. Tsujimura, and Y. Ito, Formation and control of zinc nitride in a molten LiCl–KCl–Li3N system, Mat. Sci. Eng. A, 380(2004), No. 1-2, p. 41. doi: 10.1016/j.msea.2004.03.054
    [44]
    H.B. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal., 2(2012), No. 5, p. 781. doi: 10.1021/cs200652y
    [45]
    C.N.R. Rao, A.K. Sood, R. Voggu, and K.S. Subrahmanyam, Some novel attributes of graphene, J. Phys. Chem. Lett., 1(2010), No. 2, p. 572. doi: 10.1021/jz9004174
    [46]
    H.P. Lei, J.G. Tu, Z.J. Yu, and S.Q. Jiao, Exfoliation mechanism of graphite cathode in ionic liquids, ACS Appl. Mater. Interfaces, 9(2017), No. 42, p. 36702. doi: 10.1021/acsami.7b03306
    [47]
    S.K. Das, Graphene: a cathode material of choice for aluminum-ion batteries, Angew. Chem. Int. Ed., 57(2018), No. 51, p. 16606. doi: 10.1002/anie.201802595
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2572) PDF Downloads(121) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return