Cite this article as: |
Fu-kai Zheng, Guan-nan Zhang, Xiu-juan Chen, Xiao Yang, Zeng-chao Yang, Yong Li, and Jiang-tao Li, A new method of preparing high-performance high-entropy alloys through high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1347-1352. https://doi.org/10.1007/s12613-020-2028-x |
Xiu-juan Chen E-mail: chenxj@lut.cn
Xiao Yang E-mail: yangxiao@mail.ipc.ac.cn
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.
[1] |
Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
|
[2] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
|
[3] |
T.W. Zhang. S.G. Ma. D. Zhao. Y.C. Wu. Y. Zhang. Z.H. Wang and J.W. Qiao, Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling, Int. J. Plast., 124(2020), p. 226. doi: 10.1016/j.ijplas.2019.08.013
|
[4] |
G. Qin, S. Wang, R.R. Chen, X. Gong, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys, J. Mater. Sci. Technol., 34(2018), No. 2, p. 365. doi: 10.1016/j.jmst.2017.11.007
|
[5] |
E.P. George, D. Raabe, and R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater., 4(2019), No. 8, p. 515. doi: 10.1038/s41578-019-0121-4
|
[6] |
C.D. Gómez-Esparza, R. Peréz-Bustamante, J.M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J.M. Olivares-Ramírez, and A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 634. doi: 10.1007/s12613-019-1771-3
|
[7] |
X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
|
[8] |
Y.J. Liang, L.J. Wang, Y.R. Wen, et al., High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys, Nat. Commun., 9(2018), No. 1, p. 4063. doi: 10.1038/s41467-018-06600-8
|
[9] |
L.L. Wang, Z.A. Munir, and Y.M. Maximov, Thermite reactions: Their utilization in the synthesis and processing of materials, J. Mater. Sci., 28(1993), No. 14, p. 3693. doi: 10.1007/BF00353167
|
[10] |
R.W. Cahn, Self-propagating high-temperature synthesis, Adv. Mater., 2(1990), No. 6-7, p. 314. doi: 10.1002/adma.19900020610
|
[11] |
W.R. Wang, H.F. Xie, L. Xie, X. Yang, J.T. Li, and Q. Peng, Fabrication of ceramics/high-entropy alloys gradient composites by combustion synthesis in ultra-high gravity field, Mater. Lett., 233(2018), p. 4. doi: 10.1016/j.matlet.2018.08.059
|
[12] |
G.H. Liu, J.T. Li, K.X. Chen, G. He, Z.C. Yang, and S.B. Guo, High-gravity combustion synthesis of W–Cr alloys with improved hardness, Mater. Chem. Phys., 182(2016), p. 6. doi: 10.1016/j.matchemphys.2016.07.036
|
[13] |
G.H. Liu, J.T. Li, Z.C. Yang, S.B. Guo, and Y.X. Chen, High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides, Scripta Mater., 69(2013), No. 8, p. 642. doi: 10.1016/j.scriptamat.2013.07.022
|
[14] |
G.H. Liu, J.T Li, and Y.X. Chen, Phase separation in melt-casting of ceramic materials by high-gravity combustion synthesis, Mater. Chem. Phys., 133(2012), No. 2-3, p. 661. doi: 10.1016/j.matchemphys.2012.01.045
|
[15] |
P.L. Mai, W.L. Fang, G.H. Liu, Y.X. Chen, S.L. He, and J.T. Li, Preparation of W–Ni graded alloy by combustion synthesis melt-casting under ultra-high gravity, Mater. Lett., 65(2011), No. 23-24, p. 3496. doi: 10.1016/j.matlet.2011.07.043
|
[16] |
P.F. Paradis and T. Ishikawa, Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques, Jpn. J. Appl. Phys., 44(2005), No. 7A, p. 5082. doi: 10.1143/JJAP.44.5082
|
[17] |
B. Glorieux, F. Millot, J.C. Rifflet, and J.P. Coutures, Density of superheated and undercooled liquid alumina by a contactless method, Int. J. Thermophys., 20(1999), No. 4, p. 1085. doi: 10.1023/A:1022650703233
|
[18] |
L. Battezzati and A.L. Greer, The viscosity of liquid metals and alloys, Acta. Metall., 37(1989), No. 7, p. 1791. doi: 10.1016/0001-6160(89)90064-3
|
[19] |
T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals, Oxford Science Publications, Oxford, 1988.
|