Yong-xing Zheng, Jilai Ning, Wei Liu, Pan-jin Hu, Jin-fang Lü, and Jie Pang, Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 358-366. https://doi.org/10.1007/s12613-020-2029-9
Cite this article as:
Yong-xing Zheng, Jilai Ning, Wei Liu, Pan-jin Hu, Jin-fang Lü, and Jie Pang, Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 358-366. https://doi.org/10.1007/s12613-020-2029-9
Research Article

Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals

+ Author Affiliations
  • Corresponding author:

    Jin-fang Lü    E-mail: jflv2017@126.com

  • Received: 24 December 2019Revised: 17 February 2020Accepted: 25 February 2020Available online: 26 February 2020
  • To evaluate the feasibility of recovering Pb and Zn sulfides and Ag-containing minerals from Zn leaching residue by the process of reduction roasting followed by flotation, the reaction behaviors of Pb and Zn sulfates during this process were investigated. Chemical analysis showed that the transformation ratios of PbSO4 and ZnSO4 could reach 65.51% and 52.12%, respectively, after reduction roasting, and the introduction of a sulfidation agent could improve the transformation ratios of these sulfates. scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) revealed that temperature obviously affects the particle size, crystal growth, and morphology of the artificial Pb and Zn sulfide minerals. Particle size analysis demonstrated that the particle size of the materials increases after roasting. Flotation tests revealed that a flotation concentrate composed of 12.01wt% Pb, 27.78wt% Zn, and 6.975 × 10−2wt% Ag with recoveries of 60.54%, 29.24%, and 57.64%, respectively, could be obtained after roasting.

  • loading
  • [1]
    Y.X. Zheng, J.F. Lv, W. Liu, W.Q. Qin, and S.M. Wen, An innovative technology for recovery of zinc, lead and silver from zinc leaching residue, Physicochen. Probl. Miner. Process., 52(2016), No. 2, p. 943.
    [2]
    J.W. Han, W. Liu, W.Q. Qin, B. Peng, K. Yang, and Y.X. Zheng, Recovery of zinc and iron from high iron-bearing zinc calcine by selective reduction roasting, J. Ind. Eng. Chem., 22(2015), p. 272. doi: 10.1016/j.jiec.2014.07.020
    [3]
    G.H. Wang, H.B. Wang, F. Zhang, and G.Q. Li, Comprehensive recycling research on the lead-zinc smelting slag, J. Jiangsu Univ. Technnol, 23(2017), No. 2, p. 7.
    [4]
    R.Q. Peng, Metallurgy of Lead and Zinc, Science Press, Beijing, 2003, p. 238.
    [5]
    S.H. Ju, Y.F. Zhang, Y. Zhang, P.Y. Xue, and Y.H. Wang, Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy, J. Hazard. Mater., 192(2011), No. 2, p. 554. doi: 10.1016/j.jhazmat.2011.05.049
    [6]
    S. Langová, J. Riplová, and S. Vallová, Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution, Hydrometallurgy, 87(2007), No. 3-4, p. 157. doi: 10.1016/j.hydromet.2007.03.002
    [7]
    A.J.B. Dutra, P.R.P. Paiva, and L.M. Tavares, Alkaline leaching of zinc from electric arc furnace steel dust, Miner. Eng., 19(2006), No. 5, p. 478. doi: 10.1016/j.mineng.2005.08.013
    [8]
    F. Farahmand, D. Moradkhani, M.S. Safarzadeh, and F. Rashchi, Brine leaching of lead-bearing zinc plant residues: Process optimization using orthogonal array design methodology, Hydrometallurgy, 95(2009), No. 3-4, p. 316. doi: 10.1016/j.hydromet.2008.07.012
    [9]
    X.T. Huang, T.H. Zhu, W.J. Duan, S. Liang, G. Li, and W. Xiao, Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type, J. Hazard. Mater., 381(2020), art. No. 120998. doi: 10.1016/j.jhazmat.2019.120998
    [10]
    A. Pappu, V.K. Thakur, R. Patidar, S.R. Asolekar, and M. Saxena, Recycling marble wastes and Jarosite wastes into sustainable hybrid composite materials and validation through response surface methodology, J. Cleaner Prod., 240(2019), art. No. 118249. doi: 10.1016/j.jclepro.2019.118249
    [11]
    E.X. Zhang, F. Jiao, W.Q. Qin, X.W. Gan, and K. Xue, Experimental research on recovering silver from zinc leaching residue by flotation, Min. Metall. Eng., 35(2015), No. 6, p. 64.
    [12]
    Z. Wang, Y. Peng, Y.X. Zheng, W. Ding, J.M. Wang, and L.H. Xu., Improved flotation of artificial galena using a new catanionic mixture, Miner. Eng., 148(2020), art. No. 106206. doi: 10.1016/j.mineng.2020.106206
    [13]
    J. Liu, M. Ejtemaei, A.V. Nguyen, S.M. Wen, and Y. Zeng, Surface chemistry of Pb-activated sphalerite, Miner. Eng., 145(2020), art. No. 106058. doi: 10.1016/j.mineng.2019.106058
    [14]
    M. Li, B. Peng, L.Y. Chai, N. Peng, H. Yan, and D.K. Hou, Recovery of iron from zinc leaching residue by selective reduction roasting with carbon, J. Hazard. Mater., 237-238(2012), p. 323. doi: 10.1016/j.jhazmat.2012.08.052
    [15]
    H. Yan, L.Y. Chai, B. Peng, M. Li, N. Peng, and D.K. Hou, A novel method to recover zinc and iron from zinc leaching residue, Miner. Eng., 55(2014), p. 103. doi: 10.1016/j.mineng.2013.09.015
    [16]
    Y.X. Zheng, W. Liu, W.Q. Qin, F. Jiao, J.W. Han, K. Yang, and H.L. Luo, Reduction of lead sulfate to lead sulfide with carbon monoxide, J. Central South Univ, 22(2015), No. 8, p. 2929. doi: 10.1007/s11771-015-2828-8
    [17]
    Y.X. Zheng, W. Liu, W.Q. Qin, J.W. Han, K. Yang, and H.L. Luo, Selective reduction of PbSO4 to PbS with carbon and flotation treatment of synthetic galena, Physicochchem. Probl. Miner. Process., 51(2015), No. 2, p. 535.
    [18]
    Y.X. Zheng, W. Liu, W.Q. Qin, Y. Kong, H.L. Luo, and J.W. Han, Mineralogical reconstruction of lead smelter slag for zinc recovery, Sep. Sci. Technol., 49(2014), No. 5, p. 783. doi: 10.1080/01496395.2013.863342
    [19]
    Y.X. Zheng, J.F. Lv, H. Wang, S.M. Wen, and J. Pang, Formation of zinc sulfide species during roasting of ZnO with pyrite and its contribution on flotation, Sci. Rep., 8(2018), No. 1, p. 7839. doi: 10.1038/s41598-018-26229-3
    [20]
    Y. Ke, N. Peng, K. Xue, X.B. Min, L.Y. Chai, Q.L. Pan, Y.J. Liang, R.Y. Xiao, Y.Y. Wang, C.J. Tang, and H. Liu, Sulfidation behavior and mechanism of zinc silicate roasted with pyrite, Appl. Surf. Sci., 435(2018), p. 1011. doi: 10.1016/j.apsusc.2017.11.202
    [21]
    Y.X. Zheng, J.F. Lv, H. Wang, S.M. Wen, and L.Y. Huang, Efficient sulfidization of lead oxide at high temperature using pyrite as vulcanizing reagent, Physicochem. Probl. Miner. Process., 54(2018), No. 2, p. 270.
    [22]
    J.W. Han, W. Liu, T.F. Zhang, K. Xue, W.H. Li, F. Jiao, and W.Q. Qin, Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature, Sci. Rep., 7(2017), No. 1, p. 1. doi: 10.1038/s41598-016-0028-x
    [23]
    Y.X. Zheng, Fundamental and technological research of sulfidation and flotation for Pb–Zn smelter slag [Dissertation], Central South University, Changsha, 2015, p. 106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(2389) PDF Downloads(47) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return