Lalinda Palliyaguru, Ushan S. Kulathunga, Lakruwani I. Jayarathna, Champa D. Jayaweera,  and Pradeep M. Jayaweera, A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 846-855. https://doi.org/10.1007/s12613-020-2030-3
Cite this article as:
Lalinda Palliyaguru, Ushan S. Kulathunga, Lakruwani I. Jayarathna, Champa D. Jayaweera,  and Pradeep M. Jayaweera, A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 846-855. https://doi.org/10.1007/s12613-020-2030-3
Research Article

A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process

+ Author Affiliations
  • Corresponding author:

    Pradeep M. Jayaweera    E-mail: pradeep@sjp.ac.lk

  • Received: 3 October 2019Revised: 24 February 2020Accepted: 25 February 2020Available online: 26 February 2020
  • A simple and novel technique for the preparation of anatase TiO2 nanopowders using natural ilmenite (FeTiO3) as the starting material is reported. Digesting ilmenite with concentrated H3PO4 under refluxing conditions yields a white α-titanium bismonohydrogen orthophosphate monohydrate (TOP), Ti(HPO4)2·H2O, which can be easily isolated via gravity separation from unreacted ilmenite. The addition of ammonia to the separated TOP followed by calcination at 500°C completes the preparation of anatase TiO2. Calcination at temperatures above 800°C converts the anatase form of TiO2 to the stable rutile phase. The removal of iron from ilmenite during the commercial production of synthetic TiO2 is problematic and environmentally unfriendly. In the present study, the removal of iron was found to be markedly simple due to the high solubility of iron phosphate species in concentrated H3PO4 with the precipitation of TOP. The titanium content of the prepared samples on metal basis with silica and phosphorous as major impurities was over 90%. Prepared TiO2 samples were characterized using X-ray fluorescence, Fourier-transform infrared spectroscopy, Raman spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, and X-ray diffraction analyses. The photocatalytic potentials of the commercial and as-prepared TiO2 samples were assessed by the photodegradation of rhodamine B dye.

  • loading
  • [1]
    A.F. Wells, Structural Inorganic Chemistry, Oxford University Press, Oxford, 2012.
    [2]
    N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, Elsevier Science, Amsterdam, 2012.
    [3]
    X.Z. Ding, X.H. Liu, and Y.Z. He, Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders, J. Mater. Sci. Lett., 15(1996), No. 20, p. 1789. doi: 10.1007/BF00275343
    [4]
    K. Sabyrov, N.D. Burrows, and R.L. Penn, Size-dependent anatase to rutile phase transformation and particle growth, Chem. Mater., 25(2013), No. 8, p. 1408. doi: 10.1021/cm302129a
    [5]
    J.G. Li, T. Ishigaki, and X.D. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties, J. Phys. Chem. C, 111(2007), No. 13, p. 4969. doi: 10.1021/jp0673258
    [6]
    D.A.H. Hanaor and C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46(2011), No. 4, p. 855. doi: 10.1007/s10853-010-5113-0
    [7]
    G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers, and J.M. Seakins, The Raman spectrum of brookite, TiO2 (Pbca, Z = 8), J. Raman Spectrosc., 26(1995), No. 1, p. 57. doi: 10.1002/jrs.1250260110
    [8]
    J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D.Y. Luan, S. Madhavi, F.Y.C. Boey, L.A. Archer, and X.W. Lou, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage, J. Am. Chem. Soc., 132(2010), No. 17, p. 6124. doi: 10.1021/ja100102y
    [9]
    X. Chen and S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 107(2007), No. 7, p. 2891. doi: 10.1021/cr0500535
    [10]
    A.L. Linsebigler, G. Lu, and J.T.J. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95(1995), No. 3, p. 735. doi: 10.1021/cr00035a013
    [11]
    M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95(1995), No. 1, p. 69. doi: 10.1021/cr00033a004
    [12]
    H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, and G.Q. Lu, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc., 131(2009), No. 11, p. 4078. doi: 10.1021/ja808790p
    [13]
    D.P. Macwan, P.N. Dave, and S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications, J. Mater. Sci., 46(2011), No. 11, p. 3669. doi: 10.1007/s10853-011-5378-y
    [14]
    F. Bosc, A. Ayral, P.A. Albouy, and C.F. Guizard, A simple route for low-temperature synthesis of mesoporous and nanocrystalline anatase thin films, Chem. Mater., 15(2003), No. 12, p. 2463. doi: 10.1021/cm031025a
    [15]
    W.F. Sullivan and S.S. Cole, Thermal chemistry of colloidal titanium dioxide, J. Am. Ceram. Soc., 42(1959), No. 3, p. 127. doi: 10.1111/j.1151-2916.1959.tb14079.x
    [16]
    H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7(1995), No. 4, p. 663. doi: 10.1021/cm00052a010
    [17]
    G.S. Li, L.P. Li, J. Boerio-Goates, and B.F. Woodfield, High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry, J. Am. Chem. Soc., 127(2005), No. 24, p. 8659. doi: 10.1021/ja050517g
    [18]
    C.C. Wang and J.Y. Ying, Sol−gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater., 11(1999), No. 11, p. 3113. doi: 10.1021/cm990180f
    [19]
    S. Cassaignon, M. Koelsch, and J.P. Jolivet, Selective synthesis of brookite, anatase and rutile nanoparticles: Thermolysis of TiCl4 in aqueous nitric acid, J. Mater. Sci., 42(2007), No. 16, p. 6689. doi: 10.1007/s10853-007-1496-y
    [20]
    R. Parra, M.S. Góes, M.S. Castro, E. Longo, P.R. Bueno, and J.A. Varela, Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid, Chem. Mater., 20(2008), No. 1, p. 143. doi: 10.1021/cm702286e
    [21]
    W.S. Zhang, Z.W. Zhu, and C.Y. Cheng, A literature review of titanium metallurgical processes, Hydrometallurgy, 108(2011), No. 3, p. 177.
    [22]
    K.K. Sahu, T.C. Alex, D. Mishra, and A. Agrawal, An overview on the production of pigment grade titania from titania-rich slag, Waste Manage. Res., 24(2006), No. 1, p. 74. doi: 10.1177/0734242X06061016
    [23]
    L. Palliyaguru, N.D.H. Arachchi, C.D. Jayaweera, and P.M. Jayaweera, Production of synthetic rutile from ilmenite via anion-exchange, Miner. Process. Extr. Metall., 127(2018), No. 3, p. 169.
    [24]
    T.A. Lasheen, Sulfate digestion process for high purity TiO2 from titania slag, Front. Chem. Eng. China, 3(2009), No. 2, p. 155. doi: 10.1007/s11705-009-0005-z
    [25]
    T. Hisashi, N. Eiichi, T. Hitoshi, A. Masahiro, and O. Taijiro, Manufacture of high pure titanium(IV) oxide by the chloride Process. I. Kinetic study on leaching of ilmenite ore in concentrated hydrochloric acid solution, Bull. Chem. Soc. Jpn, 55(1982), No. 6, p. 1934. doi: 10.1246/bcsj.55.1934
    [26]
    S. Sariman, Y.K. Krisnandi, and B. Setiawan, Anatase TiO2 enrichment from bangka ilmenite (FeTiO3) and its photocatalytic test on degradation of congo red, Adv. Mater. Res., 789(2013), p. 538. doi: 10.4028/www.scientific.net/AMR.789.538
    [27]
    S. Wahyuingsih, A.H. Ramelan, E. Pramono, A.D. Sulistya, P.R. Argawan, F.D. Dharmawan, L. Rinawati, Q.A. Hanif, E. Sulistiyono, and F. Firdiyono, Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite, AIP Conf. Proc., 1710(2016), No. 1, art. No. 030023.
    [28]
    L. Palliyaguru, M.U.S. Kulathunga, K.G.U.R. Kumarasinghe, C.D. Jayaweera, and P.M. Jayaweera, Facile synthesis of titanium phosphates from ilmenite mineral sand: Potential white pigments for cosmetic applications, J. Cosmet. Sci., 70(2019), No. 3, p. 149.
    [29]
    B.D. Cullity, Elements of X-ray Diffraction, 3rd ed., Addison-Wesley Publishing Company, New Jersey, 1978.
    [30]
    R.A. Spurr and H. Myers, Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer, Anal. Chem., 29(1957), No. 5, p. 760. doi: 10.1021/ac60125a006
    [31]
    P. Kubelka, New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Am., 38(1948), No. 5, p. 448. doi: 10.1364/JOSA.38.000448
    [32]
    A. Stoch, W. Jastrzębski, A. Brożek, J. Stoch, J. Szaraniec, B. Trybalska, and G. Kmita, FTIR absorption–reflection study of biomimetic growth of phosphates on titanium implants, J. Mol. Struct., 555(2000), No. 1-3, p. 375. doi: 10.1016/S0022-2860(00)00623-2
    [33]
    T.S. Sysoeva, E.A. Asabina, V.I. Pet’kov, and V.S. Kurazhkovskaya, Alkali (alkaline-earth) metal, aluminum, and titanium complex orthophosphates: Synthesis and characterization, Russ. J. Inorg. Chem., 54(2009), No. 6, p. 829. doi: 10.1134/S0036023609060035
    [34]
    C. Ratanatamskul, S. Chintitanun, N. Masomboon, and M.C. Lu, Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process, J. Mol. Catal. A:Chem., 331(2010), No. 1, p. 101.
    [35]
    T.B. Zhang, Y.C. Lu, and G.S. Luo, Effects of temperature and phosphoric acid addition on the solubility of iron phosphate dihydrate in aqueous solutions, Chin. J. Chem. Eng., 25(2017), No. 2, p. 211. doi: 10.1016/j.cjche.2016.06.009
    [36]
    J.J. Beltrán, F.J. Novegil, K.E. García, and C.A. Barrero, On the reaction of iron oxides and oxyhydroxides with tannic and phosphoric acid and their mixtures, Hyperfine Interact., 195(2010), No. 1, p. 133.
    [37]
    M. Iuliano, L. Ciavatta, and G. De Tommaso, On the solubility constant of strengite, Soil Sci. Soc. Am. J., 71(2007), No. 4, p. 1137. doi: 10.2136/sssaj2006.0109
    [38]
    W.J. Zhou, W. He, X.D. Zhang, J.A. Liu, Y. Du, S.P. Yan, X.Y. Tian, X.A. Sun, X.X. Han, and Y.Z. Yue, Simple and rapid synthesis of Fe(PO3)3 by microwave sintering, J. Chem. Eng. Data, 54(2009), No. 7, p. 2073. doi: 10.1021/je800956a
    [39]
    Y.H. Zhang and A. Reller, Phase transformation and grain growth of doped nanosized titania, Mater. Sci. Eng. C, 19(2002), No. 1, p. 323.
    [40]
    W.F. Sullivan and J.R. Coleman, Effect of sulphur trioxide on the anatase–rutile transformation, J. Inorg. Nucl. Chem., 24(1962), No. 6, p. 645. doi: 10.1016/0022-1902(62)80083-9
    [41]
    J. Yang and J.M.F. Ferreira, On the titania phase transition by zirconia additive in a sol–gel-derived powder, Mater. Res. Bull., 33(1998), No. 3, p. 389. doi: 10.1016/S0025-5408(97)00249-3
    [42]
    A.A. Gribb, and J.F. Banfield, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Mineral., 82(1997), No. 7-8, p. 717. doi: 10.2138/am-1997-7-809
    [43]
    K.J.D. Mackenzie, The calcination of titania. VI. The effect of reaction atmosphere and electric fields on the anatase–rutile transformation, Trans. J. Brit. Ceram. Soc., 74(1975), No. 4, p. 121.
    [44]
    K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, and K.J.D. MacKenzie, Effect of silica additive on the anatase-to-rutile phase transition, J. Am. Ceram. Soc., 84(2001), No. 7, p. 1591.
    [45]
    Y.H. Zhang, C.K. Chan, J.F. Porter, and W. Guo, Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis, J. Mater. Res., 13(2011), No. 9, p. 2602.
    [46]
    T. Ohsaka, F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc., 7(1978), No. 6, p. 321. doi: 10.1002/jrs.1250070606
    [47]
    E.O. Huffman, W.E. Cate, M.E. Deming, and K.L. Elmore, Solubility of phosphates, rates of solution of calcium phosphates in phosphoric acid solutions, J. Agric. Food Chem., 5(1957), No. 4, p. 266. doi: 10.1021/jf60074a001
    [48]
    W.E. Cate and M.E. Deming, Effect of impurities on density and viscosity of simulated wet-process phosphoric acid, J. Chem. Eng. Data, 15(1970), No. 2, p. 290. doi: 10.1021/je60045a016
    [49]
    A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95(1995), No. 1, p. 49. doi: 10.1021/cr00033a003
    [50]
    J.F. Zhang, P. Zhou, J.J. Liu, and J.G. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16(2014), No. 38, p. 20382. doi: 10.1039/C4CP02201G
    [51]
    N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B, 110(2006), No. 48, p. 24287.
    [52]
    K. Madhusudan Reddy, S.V. Manorama, and A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78(2003), No. 1, p. 239. doi: 10.1016/S0254-0584(02)00343-7
    [53]
    E.M. Samsudin and S.B. Abd Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst, Appl. Surf. Sci., 391(2017), p. 326. doi: 10.1016/j.apsusc.2016.07.007
    [54]
    M. Karbassi, A. Nemati, M.H. zari, and K. Ahadi, Effect of iron oxide and silica doping on microstructure, bandgap and photocatalytic properties of titania by water-in-oil microemulsion technique, Trans. Indian Ceram. Soc., 70(2011), No. 4, p. 227. doi: 10.1080/0371750X.2011.10600173
    [55]
    J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114(2014), No. 19, p. 9919. doi: 10.1021/cr5001892
    [56]
    S.G. Kumar and L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics, The J. Phys. Chem. A, 115(2011), No. 46, p. 13211. doi: 10.1021/jp204364a
    [57]
    C.S. Turchi and D.F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, J. Catal., 122(1990), No. 1, p. 178. doi: 10.1016/0021-9517(90)90269-P
    [58]
    C. Naccache, P. Meriaudeau, M. Che, and A.J. Tench, Identification of oxygen species adsorbed on reduced titanium dioxide, Trans. Faraday Soc., 67(1971), No. 67, p. 506.
    [59]
    W.Z. Tang and A.N. Huren, UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions, Chemosphere, 31(1995), No. 9, p. 4157. doi: 10.1016/0045-6535(95)80015-D
    [60]
    J. He,Y.E. Du,Y. Bai, J. An, X.M. Cai, Y.Q. Chen, P.F. Wang, X.J. Yang and Q. Feng, Facile formation of anatase/rutile TiO2 nanocomposites with enhanced photocatalytic activity, Molecules, 24(2019), No. 16, p. 2996. doi: 10.3390/molecules24162996
    [61]
    T. Luttrell, S. Halpegamage, J.G. Tao, A. Kramer, E. Sutter, and M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep., 4(2014), art. No. 4043.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(4315) PDF Downloads(248) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return