Bo-yu Ju, Wen-shu Yang, Qiang Zhang, Murid Hussain, Zi-yang Xiu, Jing Qiao, and Gao-hui Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1179-1190. https://doi.org/10.1007/s12613-020-2031-2
Cite this article as:
Bo-yu Ju, Wen-shu Yang, Qiang Zhang, Murid Hussain, Zi-yang Xiu, Jing Qiao, and Gao-hui Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1179-1190. https://doi.org/10.1007/s12613-020-2031-2
Invited Review

Research progress on the characterization and repair of graphene defects

+ Author Affiliations
  • Corresponding authors:

    Wen-shu Yang    E-mail: yws001003@163.com

    Gao-hui Wu    E-mail: wugh@hit.edu.cn

  • Received: 12 January 2020Revised: 26 February 2020Accepted: 27 February 2020Available online: 6 March 2020
  • Graphene has excellent theoretical properties and a wide range of applications in metal-based composites. However, because of defects on the graphene surface, the actual performance of the material is far below theoretical expectations. In addition, graphene containing defects could easily react with a matrix alloy, such as Al, to generate brittle and hydrolyzed phases that could further reduce the performance of the resulting composite. Therefore, defect repair is an important area of graphene research. The repair methods reported in the present paper include chemical vapor deposition, doping, liquid-phase repair, external energy graphitization, and alloying. Detailed analyses and comparisons of these methods are carried out, and the characterization methods of graphene are introduced. The mechanism, research value, and future outlook of graphene repair are also discussed at length. Graphene defect repair mainly relies on the spontaneous movement of C atoms or heteroatoms to the pore defects under the condition of applied energy. The repair degree and mechanism of graphene repair are also different according to different preparations. The current research on graphene defect repair is still in its infancy, and it is believed that the problem of defect evolution will be explained in more depth in the future.

  • loading
  • [1]
    C.G. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321(2008), No. 5887, p. 385. doi: 10.1126/science.1157996
    [2]
    A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9(2009), No. 1, p. 30. doi: 10.1021/nl801827v
    [3]
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(2008), No. 3, p. 902. doi: 10.1021/nl0731872
    [4]
    M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S.R. Wang, X.D. Tang, and X.W. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Compos. Part B, 60(2014), p. 111. doi: 10.1016/j.compositesb.2013.12.043
    [5]
    L. Zhang, G.M. Hou, W. Zhai, Q. Ai, J.K. Feng, L. Zhang, P.C. Si, and L.J. Ci, Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles, J. Alloys Compd., 748(2018), p. 854. doi: 10.1016/j.jallcom.2018.03.237
    [6]
    Z.H. Yu, W.S. Yang, C. Zhou, N.B. Zhang, Z.L. Chao, H. liu, Y.F. Cao, Y. Sun, P.Z. Shao, and G.H. Wu, Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method, Carbon, 141(2019), p. 25. doi: 10.1016/j.carbon.2018.09.041
    [7]
    L. Xin, X. Tian, W.S. Yang, G. Chen, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 763(2018), p. 305. doi: 10.1016/j.jallcom.2018.05.310
    [8]
    X.H. Liu, J.J. Li, E.Z. Liu, Q.Y. Li, C.N. He, C.N. Shi, and N.Q. Zhao, Effectively reinforced load transfer and fracture elongation by forming Al4C3 for in-situ synthesizing carbon nanotube reinforced Al matrix composites, Mater. Sci. Eng. A, 718(2018), p. 182. doi: 10.1016/j.msea.2018.01.065
    [9]
    L.J. Ci, Z.Y. Ryu, N.Y. Jin-Phillipp, and M. Rühle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 54(2006), No. 20, p. 5367. doi: 10.1016/j.actamat.2006.06.031
    [10]
    W.W. Zhou, S. Sasaki, and A. Kawasaki, Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment, Carbon, 78(2014), p. 121. doi: 10.1016/j.carbon.2014.06.055
    [11]
    K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater., 22(2010), No. 40, p. 4467. doi: 10.1002/adma.201000732
    [12]
    A.C. Crowther, A. Ghassaei, N. Jung, and L.E. Brus, Strong charge-transfer doping of 1 to 10 layer graphene by NO2, ACS Nano, 6(2012), No. 2, p. 1865. doi: 10.1021/nn300252a
    [13]
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143(2007), No. 1-2, p. 47. doi: 10.1016/j.ssc.2007.03.052
    [14]
    J.X. Wu, H. Xu, and J. Zhang, Raman spectroscopy of graphene, Acta Chim. Sinica, 72(2014), No. 3, p. 301. doi: 10.6023/A13090936
    [15]
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473(2009), No. 5-6, p. 51. doi: 10.1016/j.physrep.2009.02.003
    [16]
    J. Lee, K.S. Novoselov, and H.S. Shin, Interaction between metal and graphene: Dependence on the layer number of graphene, ACS Nano, 5(2011), No. 1, p. 608. doi: 10.1021/nn103004c
    [17]
    H.M.I. Jaim, D.P. Cole, and L.G. Salamanca-Riba, Characterization of carbon nanostructures in Al and Ag covetic alloys, Carbon, 111(2017), p. 309. doi: 10.1016/j.carbon.2016.10.007
    [18]
    S. Grimm, M. Schweiger, S. Eigler, and J. Zaumseil, High-quality reduced graphene oxide by CVD-assisted annealing, J. Phys. Chem. C, 120(2016), No. 5, p. 3036. doi: 10.1021/acs.jpcc.5b11598
    [19]
    A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, and C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett., 12(2012), No. 8, p. 3925. doi: 10.1021/nl300901a
    [20]
    A.C. Ferrari and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., 8(2013), No. 4, p. 235. doi: 10.1038/nnano.2013.46
    [21]
    K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cançado, M.A. Pimenta, A. Jorio, G.G. Samsonidze, G. Dresselhaus, and M.S. Dresselhaus, D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size, Chem. Phys. Lett., 427(2006), No. 1-3, p. 117. doi: 10.1016/j.cplett.2006.05.107
    [22]
    L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, and A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 11(2011), No. 8, p. 3190. doi: 10.1021/nl201432g
    [23]
    L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, and M.A. Pimenta, General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy, Appl. Phys. Lett., 88(2006), No. 16, art. No. 163106. doi: 10.1063/1.2196057
    [24]
    L. Daukiya, C. Mattioli, D. Aubel, S. Hajjar-Garreau, F. Vonau, E. Denys, G. Reiter, J. Fransson, E. Perrin, M.L. Bocquet, C. Bena, A. Gourdon, and L. de Laborderie Simon, Covalent functionalization by cycloaddition reactions of pristine defect-free graphene, ACS Nano, 11(2017), No. 1, p. 627. doi: 10.1021/acsnano.6b06913
    [25]
    S.M. Hafiz, S.K. Chong, N.M. Huang, and S. Abdul Rahman, Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition, Carbon, 86(2015), p. 1. doi: 10.1016/j.carbon.2015.01.018
    [26]
    B. Lesiak, L. Kövér, J. Tóth, J. Zemek, P. Jiricek, A. Kromka, and N. Rangam, C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study, Appl. Surf. Sci., 452(2018), p. 223. doi: 10.1016/j.apsusc.2018.04.269
    [27]
    N. Dwivedi, S. Kumar, H.K. Malik, Govind, C.M.S. Rauthan, and O.S. Panwar, Correlation of sp(3) and sp(2) fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films, Appl. Surf. Sci., 257(2011), No. 15, p. 6804. doi: 10.1016/j.apsusc.2011.02.134
    [28]
    W.J. Xie, L.T. Weng, K.M. Ng, C.K. Chan, and C.M. Chan, Defects of clean graphene and sputtered graphite surfaces characterized by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, Carbon, 112(2017), p. 192. doi: 10.1016/j.carbon.2016.11.002
    [29]
    H. Asgharzadeh and M. Sedigh, Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide, J. Alloys Compd., 728(2017), p. 47. doi: 10.1016/j.jallcom.2017.08.268
    [30]
    R. Rozada, J.I. Paredes, M.J. Lopez, S. Villar-Rodil, I. Cabria, J.A. Alonso, A. Martinez-Alonso, and J.M.D. Tascon, From graphene oxide to pristine graphene: Revealing the inner workings of the full structural restoration, Nanoscale, 7(2015), No. 6, p. 2374. doi: 10.1039/C4NR05816J
    [31]
    W.T. Su, N. Kumar, A. Krayev, and M. Chaigneau, In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale, Nat. Commun., 9(2018), No. 1, art. No. 2891. doi: 10.1038/s41467-018-05307-0
    [32]
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon, 49(2011), No. 9, p. 3019. doi: 10.1016/j.carbon.2011.02.071
    [33]
    C. Xu, R.S. Yuan, and X. Wang, Selective reduction of graphene oxide, New Carbon Mater., 29(2014), No. 1, p. 61. doi: 10.1016/S1872-5805(14)60126-8
    [34]
    R. Ramachandran, S. Felix, G.M. Joshi, B.P.C. Raghupathy, S.K. Jeong, and A.N. Grace, Synthesis of graphene platelets by chemical and electrochemical route, Mater. Res. Bull., 48(2013), No. 10, p. 3834. doi: 10.1016/j.materresbull.2013.05.085
    [35]
    D.W. Choi, H. Park, J.H. Lim, T.H. Han, and J.S. Park, Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications, Carbon, 125(2017), p. 464. doi: 10.1016/j.carbon.2017.09.061
    [36]
    D.T. Zhu, H.H. Pu, P. Lv, Z.J. Zhu, C.H. Yang, R.L. Zheng, Z.Y. Wang, C.X. Liu, E.T. Hu, J.J. Zheng, K.H. Yu, W. Wei, L.Y. Chen, and J.H. Chen, Healing of reduced graphene oxide with methane plus hydrogen plasma, Carbon, 120(2017), p. 274. doi: 10.1016/j.carbon.2017.05.032
    [37]
    M. Cheng, R. Yang, L.C. Zhang, Z.W. Shi, W. Yang, D.M. Wang, G.B. Xie, D.X. Shi, and G.Y. Zhang, Restoration of graphene from graphene oxide by defect repair, Carbon, 50(2012), No. 7, p. 2581. doi: 10.1016/j.carbon.2012.02.016
    [38]
    V. López, R.S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, and K. Kern, Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers, Adv. Mater., 21(2009), No. 46, p. 4683. doi: 10.1002/adma.200901582
    [39]
    C.Y. Su, Y.P. Xu, W.J. Zhang, J.W. Zhao, A.P. Liu, X.H. Tang, C.H. Tsai, Y.Z. Huang, and L.J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors, ACS Nano, 4(2010), No. 9, p. 5285. doi: 10.1021/nn101691m
    [40]
    B.M. Zhou, X.M. Qian, M.M. Li, J.L. Ma, L.S. Liu, C.S. Hu, Z.W. Xu, and X.N. Jiao, Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma, J. Nanopart. Res., 17(2015), No. 3, p. 1.
    [41]
    K.H. Kim, M. Yang, K.M. Cho, Y.S. Jun, S.B. Lee, and H.T. Jung, High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures, Sci. Rep., 3(2013), art. No. 3251. doi: 10.1038/srep03251
    [42]
    K.C. Cao, Y. Tian, Y.Z. Zhang, X.D. Yang, C.Y. Bai, Y. Luo, X.S. Zhao, L.J. Ma, and S.J. Li, Strategy and mechanism for controlling the direction of defect evolution in graphene: Preparation of high quality defect healed and hierarchically porous graphene, Nanoscale, 6(2014), No. 22, p. 13518. doi: 10.1039/C4NR04453C
    [43]
    T.T. Tung, F. Alotaibi, M.J. Nine, R. Silva, D.N.H. Tran, I. Janowska, and D. Losic, Engineering of highly conductive and ultra-thin nitrogen-doped graphene films by combined methods of microwave irradiation, ultrasonic spraying and thermal annealing, Chem. Eng., 338(2018), p. 764. doi: 10.1016/j.cej.2018.01.085
    [44]
    A. Omidvar, M.R. RashidianVaziri, and B. Jaleh, Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles, Physica E, 103(2018), p. 239. doi: 10.1016/j.physe.2018.06.013
    [45]
    G.Q. Xin, T.K. Yao, H.T. Sun, S.M. Scott, D.L. Shao, G.K. Wang, and J. Lian, Highly thermally conductive and mechanically strong graphene fibers, Science, 349(2015), No. 6252, p. 1083. doi: 10.1126/science.aaa6502
    [46]
    C.P. Ruan, Z. Yang, H.G. Nie, X.M. Zhou, Z.Q. Guo, L. Wang, X.W. Ding, X.A. Chen, and S.M. Huang, Three-dimensional sp2 carbon networks prepared by ultrahigh temperature treatment for ultrafast lithium−sulfur batteries, Nanoscale, 10(2018), No. 23, p. 10999. doi: 10.1039/C8NR02983K
    [47]
    R. Rozada, J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J.M.D. Tascón, Towards full repair of defects in reduced graphene oxide films by two-step graphitization, Nano Res., 6(2013), No. 3, p. 216. doi: 10.1007/s12274-013-0298-6
    [48]
    H.Y. Sun, X.M. Li, Y.C. Li, G.X. Chen, Z.D. Liu, F.E. Alam, D. Dai, L. Li, L. Tao, J.B. Xu, Y. Fang, X.S. Li, P. Zhao, N. Jiang, D. Chen, and C.T. Lin, High-quality monolithic graphene films via laterally stitched growth and structural repair of isolated flakes for transparent electronics, Chem. Mater., 29(2017), No. 18, p. 7808. doi: 10.1021/acs.chemmater.7b02348
    [49]
    L. Chen, Z.W. Xu, J. Li, C.Y. Min, L.S. Liu, X.Y. Song, G.W. Chen, and X.F. Meng, Reduction and disorder in graphene oxide induced by electron-beam irradiation, Mater. Lett., 65(2011), No. 8, p. 1229. doi: 10.1016/j.matlet.2011.01.063
    [50]
    J. Shi, W.W. Jiang, L.S. Liu, M.L. Jing, F.Y. Li, Z.W. Xu, and X.X. Zhang, Elucidating synthesis of noble metal nanoparticles/graphene oxide in free-scavenger γ-irradiation, Curr. Appl. Phys., 19(2019), No. 7, p. 780. doi: 10.1016/j.cap.2019.03.022
    [51]
    Z.W. Xu, Y.Y. Zhang, X.M. Qian, J. Shi, L. Chen, B.D. Li, J.R. Niu, and L.S. Liu, One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal, Appl. Surf. Sci., 316(2014), p. 308. doi: 10.1016/j.apsusc.2014.07.155
    [52]
    Y.Y. Zhang, L. Chen, Z.W. Xu, Y.L. Li, B.M. Zhou, M.J. Shan, Z. Wang, Q.W. Guo, and X.M. Qian, Preparing graphene with notched edges and nanopore defects by γ-ray etching of graphite oxide, Mater. Lett., 89(2012), p. 226. doi: 10.1016/j.matlet.2012.08.113
    [53]
    Y. Shi, D.S. Xiong, J.L. Li, K. Wang, and N. Wang, In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels, RSC Adv., 7(2017), No. 2, p. 1045. doi: 10.1039/C6RA24949C
    [54]
    Z.W. Xu, L. Chen, J.L. Li, R. Wang, X.M. Qian, X.Y. Song, L.S. Liu, and G.S. Chen, Oxidation and disorder in few-layered graphene induced by the electron-beam irradiation, Appl. Phys. Lett., 98(2011), No. 18, art. No. 183112. doi: 10.1063/1.3587798
    [55]
    Y.F. Zhang, J. Shi, C. Chen, N. Li, Z.W. Xu, L.S. Liu, L.H. Zhao, J. Li, and M.L. Jing, Structural evolution of defective graphene under heat treatment and gamma irradiation, Physica E, 97(2018), p. 151. doi: 10.1016/j.physe.2017.11.007
    [56]
    D. Voiry, J.U Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, and M. Chhowalla, High-quality graphene via microwave reduction of solution-exfoliated graphene oxide, Science, 353(2016), No. 6306, p. 1413. doi: 10.1126/science.aah3398
    [57]
    P.Z. Shao, W.S. Yang, Q. Zhang, Q.Y. Meng, X. Tan, Z.Y. Xiu, J. Qiao, Z.H. Yu, and G.H. Wu, Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method, Composites Part A, 109(2018), p. 151. doi: 10.1016/j.compositesa.2018.03.009
    [58]
    R. Guan, Y. Wang, S. Zheng, N. Su, Z. Ji, Z. Liu, Y. An, and B. Chen, Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets, Mater. Sci. Eng. A, 754(2019), p. 437. doi: 10.1016/j.msea.2019.03.068
    [59]
    X.H. Liu, J.J. Li, E.Z. Liu, C.N. He, C.S. Shi, and N.Q. Zhao, Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite, Mater. Sci. Eng. A, 748(2019), p. 52. doi: 10.1016/j.msea.2019.01.046
    [60]
    J. Wang, X. Zhang, N.Q. Zhao, and C.N. He, In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility, J. Mater. Sci., 54(2018), No. 7, p. 5498.
    [61]
    A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, and V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem., 2(2010), No. 7, p. 581. doi: 10.1038/nchem.686
    [62]
    T. Sun, S. Fabris, and S. Baroni, Surface precursors and reaction mechanisms for the thermal reduction of graphene basal surfaces oxidized by atomic oxygen, J. Phys. Chem. C, 115(2011), No. 11, p. 4730. doi: 10.1021/jp111372k
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(2808) PDF Downloads(105) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return