Hai-xia Liu, Meng-yuan Teng, Xu-guang Wei, Tian-duo Li, Zai-yong Jiang, Qing-fen Niu, and Xu-ping Wang, Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 495-502. https://doi.org/10.1007/s12613-020-2033-0
Cite this article as:
Hai-xia Liu, Meng-yuan Teng, Xu-guang Wei, Tian-duo Li, Zai-yong Jiang, Qing-fen Niu, and Xu-ping Wang, Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 495-502. https://doi.org/10.1007/s12613-020-2033-0
Research Article

Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance

+ Author Affiliations
  • Corresponding authors:

    Hai-xia Liu    E-mail: liuhaixia929@163.com

    Xu-ping Wang    E-mail: wangxp@sdas.org

  • Received: 24 December 2019Revised: 2 March 2020Accepted: 4 March 2020Available online: 6 March 2020
  • Zinc acetate is used as a raw material to synthesize the desired ZnO in hot solvent by controlling the amount of citric acid (CA) added. Notably, the amount of CA added has a significant relationship with the control of the morphology of ZnO. Spherical ZnO wrapped in nanosheets is synthesized through the secondary crystallization of Zn2+. The optical properties of the ZnO sample are tested through the degradation of organic pollutants. Notably, the photocatalytic properties of ZnO vary with the different amounts of CA added. Exposure of the active crystal face increases the photocatalytic activity of ZnO. In addition, the number of defects on the surface of the ZnO sample increases because of its large specific surface area, thus changing the bandgap of ZnO. Therefore, the resulting sample can respond under visible light.

  • loading
  • [1]
    Z.Y. Jiang, X.H. Zhang, Z.M. Yuan, J.C. Chen, B.B. Huang, D.D. Dionysiou, and G.H. Yang, Enhanced photocatalytic CO2 reduction via the synergistic effect between Ag and activated carbon in TiO2/AC–Ag ternary composite, Chem. Eng. J., 348(2018), p. 592. doi: 10.1016/j.cej.2018.04.180
    [2]
    Z.Y. Jiang, W. Sun, W.K. Miao, Z.M. Yuan, G.H. Yang, F.G. Kong, T.J. Yan, J.C. Chen, B.B. Huang, C.H. An, and G.A. Ozin, Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst, Adv. Sci., 6(2019), No. 15, art. No. 1900289.
    [3]
    Q.L. Huang, Q.T. Zhang, S.S. Yuan, Y.C. Zhang, and M. Zhang, One-pot facile synthesis of branched Ag–ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst, Appl. Surf. Sci., 353(2015), p. 949. doi: 10.1016/j.apsusc.2015.06.197
    [4]
    S. Girish Kumar and K.S.R. Koteswara Rao, Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications, Appl. Surf. Sci., 355(2015), p. 939. doi: 10.1016/j.apsusc.2015.07.003
    [5]
    S.Q. Song, B. Cheng, N.S. Wu, A.Y. Meng, S.W. Cao, and J.G. Yu, Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3–rGO for photocatalytic elimination of pollutants, Appl. Catal. B, 181(2016), p. 71. doi: 10.1016/j.apcatb.2015.07.034
    [6]
    Y.J. Liu, H.X. Liu, H.M. Zhou, T.D. Li, and L.N. Zhang, A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation, Appl. Surf. Sci., 466(2019), p. 133. doi: 10.1016/j.apsusc.2018.10.027
    [7]
    S. Rehman, R. Ullah, A.M. Butt, and N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170(2009), No. 2-3, p. 560. doi: 10.1016/j.jhazmat.2009.05.064
    [8]
    C.G. Tian, Q. Zhang, A.P. Wu, M.J. Jiang, Z.L. Liang, B.J. Jiang, and H.G. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation, Chem. Commun., 48(2012), No. 23, p. 2858. doi: 10.1039/c2cc16434e
    [9]
    E. Jang, D.W. Kim, S.H. Hong, Y.M. Park, and T.J. Park, Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor, Appl. Surf. Sci., 487(2019), p. 206. doi: 10.1016/j.apsusc.2019.05.035
    [10]
    X.D. Wang, C.J. Summers, and Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nano Lett., 4(2004), No. 3, p. 423. doi: 10.1021/nl035102c
    [11]
    S.T. Kochuveedu, Y.H. Jang, and D.H. Kim, A study on the mechanism for the interaction of light with noble metal–metal oxide semiconductor nanostructures for various photophysical applications, Chem. Soc. Rev., 42(2013), No. 21, p. 8467. doi: 10.1039/c3cs60043b
    [12]
    C. Jaramillo-Páez, J.A. Navío, M.C. Hidalgo, and M. Macías, High UV- photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method, Catal. Today, 284(2017), p. 121. doi: 10.1016/j.cattod.2016.11.021
    [13]
    H. Bouzid, M. Faisal, F.A. Harraz, S.A. Al-Sayari, and A.A. Ismail, Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity, Catal. Today, 252(2015), p. 20. doi: 10.1016/j.cattod.2014.10.011
    [14]
    R. Gupta, N.K. Eswar, J.M. Modak, and G. Madras, Ag and CuO impregnated on Fe doped ZnO for bacterial inactivation under visible light, Catal. Today, 300(2018), p. 71. doi: 10.1016/j.cattod.2017.05.032
    [15]
    C. Karunakaran and P. Vinayagamoorthy, Superparamagnetic core/shell Fe2O3/ZnO nanosheets as photocatalyst cum bactericide, Catal. Today, 284(2017), p. 114. doi: 10.1016/j.cattod.2016.11.022
    [16]
    X. Zong, C.H. Sun, H. Yu, Z.G. Chen, Z. Xing, D.L. Ye, G.Q. Lu, X.Y. Li, and L.Z. Wang, Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light, J. Phys. Chem. C, 117(2013), No. 10, p. 4937. doi: 10.1021/jp311729b
    [17]
    K. Mahmood, H.W. Kang, S.B. Park, and H.J. Sung, Hydrothermally grown upright-standing nanoporous nanosheets of iodine-doped ZnO (ZnO:I) nanocrystallites for a high-efficiency dye-sensitized solar cell, ACS Appl. Mater. Interfaces, 5(2013), No. 8, p. 3075. doi: 10.1021/am303272g
    [18]
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453(2008), p. 638. doi: 10.1038/nature06964
    [19]
    K.B. Zhou, X. Wang, X.M. Sun, Q. Peng, and Y.D. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 229(2005), No. 1, p. 206. doi: 10.1016/j.jcat.2004.11.004
    [20]
    E.S. Jang, J.-H. Won, S.-J. Hwang, and J.-H. Choy, Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity, Adv. Mater., 18(2006), No. 24, p. 3309. doi: 10.1002/adma.200601455
    [21]
    A. McLaren, T. Valdes-Solis, G.Q. Li, and S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc., 131(2009), No. 35, p. 12540. doi: 10.1021/ja9052703
    [22]
    Y.J. Liu, H.X. Liu, B.B. Huang, T.D. Li, and J.G. Wang, Nano needle decorated ZnO hollow spheres with exposed (0001) planes and their corrosion using acetic acid, CrystEngComm, 19(2017), No. 38, p. 5774. doi: 10.1039/C7CE01398A
    [23]
    S. He, S.T. Zhang, J. Lu, Y.F. Zhao, J. Ma, M. Wei, D.G. Evans, and X. Duan, Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate, Chem. Commun., 47(2011), No. 38, p. 10797. doi: 10.1039/c1cc14360c
    [24]
    J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Qin, X.Y. Zhang, and Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl. Mater. Interfaces, 4(2012), No. 8, p. 4024. doi: 10.1021/am300835p
    [25]
    E. Grabowska, J.W. Sobczak, M. Gazda, and A. Zaleska, Surface properties and visible light activity of W–TiO2 photocatalysts prepared by surface impregnation and sol–gel method, Appl. Catal. B, 117-118(2012), p. 351. doi: 10.1016/j.apcatb.2012.02.003
    [26]
    X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746. doi: 10.1126/science.1200448
    [27]
    X.J. Bai, L. Wang, R.L. Zong, Y.H. Lv, Y.Q. Sun, and Y.F. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir, 29(2013), No. 9, p. 3097. doi: 10.1021/la4001768
    [28]
    J.C. Wang, P. Liu, X.Z. Fu, Z.H. Li, W. Han, and X.X. Wang, Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes, Langmuir, 25(2009), No. 2, p. 1218. doi: 10.1021/la803370z
    [29]
    J. Wang, Y. Xia, Y. Dong, R.S. Chen, L. Xiang, and S. Komarneni, Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst, Appl. Catal. B, 192(2016), p. 8. doi: 10.1016/j.apcatb.2016.03.040
    [30]
    H.F. Greer, W.Z. Zhou, G. Zhang, and H. Ménard, Nanocone decorated ZnO microspheres exposing the (0001) plane and enhanced photocatalytic properties, Adv. Mater. Interfaces, 4(2017), No. 13, art. No. 1601238. doi: 10.1002/admi.201601238
    [31]
    V.K. LaMer and R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., 72(1950), No. 11, p. 4847. doi: 10.1021/ja01167a001
    [32]
    H. Reiss, The growth of uniform colloidal dispersions, J. Chem. Phys., 19(1951), No. 4, p. 482. doi: 10.1063/1.1748251
    [33]
    S.G. Kwon and T. Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods, Small, 7(2011), No. 19, p. 2685. doi: 10.1002/smll.201002022
    [34]
    H. Wang, C.C. Wang, Q.F. Chen, B.S. Ren, R.F. Guan, X.F. Cao, X.P. Yang, and R. Duan, Interface-defect-mediated photocatalysis of mesocrystalline ZnO assembly synthesized in-situ via a template-free hydrothermal approach, Appl. Surf. Sci., 412(2017), p. 517. doi: 10.1016/j.apsusc.2017.04.024
    [35]
    O. Bechambi, M. Chalbi, W. Najjar, and S. Sayadi, Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity, Appl. Surf. Sci., 347(2015), p. 414. doi: 10.1016/j.apsusc.2015.03.049
    [36]
    Y. Haldorai, A. Rengaraj, C.H. Kwak, Y.S. Huh, and Y.-K. Han, Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants, Synth. Met., 198(2014), p. 10. doi: 10.1016/j.synthmet.2014.09.034
    [37]
    X.X. Wei, H.T. Cui, S.Q. Guo, L.F. Zhao, and W. Li, Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment, J. Hazard. Mater., 263(2013), p. 650. doi: 10.1016/j.jhazmat.2013.10.027
    [38]
    R. Ghosh Chaudhuri and S. Paria, Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route, Dalton Trans., 43(2014), No. 14, p. 5526. doi: 10.1039/c3dt53311e
    [39]
    L.O. de B. Benetoli, B.M. Cadorin, C. da S. Postiglione, I.G. de Souza, and N.A. Debacher, Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor, J. Braz. Chem. Soc., 22(2011), No. 9, p. 1669. doi: 10.1590/S0103-50532011000900008
    [40]
    C.-H. Wu and J.-M. Chern, Kinetics of photocatalytic decomposition of methylene blue, Ind. Eng. Chem. Res., 45(2006), No. 19, p. 6450. doi: 10.1021/ie0602759
    [41]
    H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
    [42]
    S. Gao, W.Y. Yang, J. Xiao, B. Li, and Q. Li, Creation of passivated Nb/N p-n co-doped ZnO nanoparticles and their enhanced photocatalytic performance under visible light illumination, J. Mater. Sci. Technol., 35(2019), No. 4, p. 610. doi: 10.1016/j.jmst.2018.09.056
    [43]
    X.W. Zhang, X.L. Zhang, X. Wang, L.Q. Liu, J.H. Ye, and D.F. Wang, Enhancing the photocatalytic activity and photostability of zinc oxide nanorod arrays via graphitic carbon mediation, Chin. J. Catal., 39(2018), No. 5, p. 973. doi: 10.1016/S1872-2067(18)63010-4
    [44]
    W.L. Yu, J.F. Zhang, and T.Y. Peng, New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts, Appl. Catal. B, 181(2016), p. 220. doi: 10.1016/j.apcatb.2015.07.031
    [45]
    R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73. doi: 10.1007/s12613-018-1548-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2298) PDF Downloads(47) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return