Jing-cheng Wang, Lei Li, and Yong Yu, Tin recovery from a low-grade tin middling with high Si content and low Fe content by reduction–sulfurization roasting with anthracite coal, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 210-220. https://doi.org/10.1007/s12613-020-2038-8
Cite this article as:
Jing-cheng Wang, Lei Li, and Yong Yu, Tin recovery from a low-grade tin middling with high Si content and low Fe content by reduction–sulfurization roasting with anthracite coal, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 210-220. https://doi.org/10.1007/s12613-020-2038-8
Research Article

Tin recovery from a low-grade tin middling with high Si content and low Fe content by reduction–sulfurization roasting with anthracite coal

+ Author Affiliations
  • Corresponding author:

    Lei Li    E-mail: tianxiametal1008@163.com

  • Received: 27 October 2019Revised: 5 March 2020Accepted: 6 March 2020Available online: 9 March 2020
  • A new method for separating and recovering tin from a low-grade tin middling with high Si content and low Fe content by roasting with anthracite coal was researched by studying the reaction mechanism and performing an industrial test, in which the Sn was sulfurized into SnS(g) and then collected using a dust collector. The Fe–Sn alloy may be formed at roasting temperatures above 950°C, and like the roasting temperature increases, the Sn content and Sn activity in this Fe–Sn alloy decrease. Also, more FeS can be formed at higher temperatures and then the formation of FeO–FeS with a low melting point is promoted, which results in more serious sintering of this low-grade tin middling. And from the thermodynamics and kinetics points of view, the volatilization of the Sn decreases at extremely high roasting temperatures. The results of the industrial test carried out in a coal-fired rotary kiln show that the Sn volatilization rate reaches 89.7% and the Sn is concentrated in the collected dust at a high level, indicating that the Sn can be effectively extracted and recovered from the low-grade tin middling with a high Si content and low Fe content through a reduction–sulfurization roasting process.

  • loading
  • [1]
    S.I. Angadi, T. Sreenivas, H.S. Jeon, S.H. Baek, and B.K. Mishra, A review of cassiterite beneficiation fundamentals and plant practices, Miner. Eng., 70(2015), p. 178. doi: 10.1016/j.mineng.2014.09.009
    [2]
    L. Meng, Z. Wang, Y.W. Zhong, K.Y. Chen, and Z.C. Guo, Supergravity separation of Pb and Sn from waste printed circuit boards at different temperatures, Int. J. Miner. Metal. Mater., 25(2018), No. 2, p. 173. doi: 10.1007/s12613-018-1560-4
    [3]
    Y.B. Xu, W.Q. Qin, and H. Liu, Mineralogical characterization of tin-polymetallic ore occurred in Mengzi, Yunnan province, China, Trans. Nonferrous Met. Soc. China, 22(2012), No. 3, p. 725. doi: 10.1016/S1003-6326(11)61237-5
    [4]
    E.A. Brocchi and F.J. Moura, Chlorination methods applied to recover refractory metals from tin slags, Miner. Eng., 21(2008), No. 2, p. 150. doi: 10.1016/j.mineng.2007.08.011
    [5]
    T. Leistner, M. Embrechts, T. Leißner, S. Chehreh Chelgani, I. Osbahr, R. Möckel, U.A. Peuker, and M. Rudolph, A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques, Miner. Eng., 96-97(2016), p. 94. doi: 10.1016/j.mineng.2016.06.020
    [6]
    S.M. Bulatovic, Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 2. 21-Flotation of Tin Minerals, Elsevier, Amsterdam, 2010, p. 87.
    [7]
    R.G. Richards, D.M. Mhunter, P.J. Gates, and M.K. Palmer, Gravity separation of ultra-fine (−0.1mm) minerals using spiral separators, Miner. Eng., 13(2000), No. 1, p. 65. doi: 10.1016/S0892-6875(99)00150-8
    [8]
    X.Y. Xu, P.C. Hayes, and E. Jak, Phase equilibria in the “SnO–SiO2–FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling, Int. J. Mater. Res., 103(2012), No. 5, p. 529. doi: 10.3139/146.110736
    [9]
    Y.B. Zhang, T. Jiang, G.H. Li, Z.C. Huang, and Y.F. Guo, Tin and zinc separation from tin. zinc bearing complex iron ores by selective reduction process, Ironmaking Steelmaking, 38(2011), No. 8, p. 613. doi: 10.1179/1743281211Y.0000000036
    [10]
    Z.W. Wang, C.Y. Wang, and H.M. Lu, Investigation on removal of tin from Sn-bearing iron concentrates by reduction roasting, Min. Metall., 14(2005), No. 2, p. 63.
    [11]
    X. Tong, Y.C. Zhou, J.F. Lü, X. Xie, and G.D. Li, Recovering tin and iron from vein tin tailings in Yunnan tin group by roasting-cohesion-magnetic separation technology, Chin. J. Nonferrous Met., 21(2011), No. 7, p. 1696.
    [12]
    L.J. Zhou, Industrial practice of direct treatment of high silicon Tin slag by cigarette furnace, China Nonferrous Metall., 2(1992), p. 30.
    [13]
    Y.N. Dai, Development of tin metallurgy technology in China, Nonferrous Met.(Extr. Metall.), 1979, No. 5, p. 8.
    [14]
    M. Omran, T. Fabritius, A.M. Elmahdy, N.A. Abdel-Khalek, and S. Gornostayev, Improvement of phosphorus removal from iron ore using combined microwave pretreatment and ultrasonic treatment, Sep. Purif. Technol., 156(2015), p. 724. doi: 10.1016/j.seppur.2015.10.071
    [15]
    Y.B. Zhang, L.Y. Chen, G.H. Li, T. Jiang, and Z.C. Huang, Mineralogical features and comprehensive utilization technology of tin, zinc-bearing iron concentrates, J. Cent. South Univ., 42(2011), No. 6, p. 1501.
    [16]
    P.L. Li, J. Cai, X.Z. Zhang, and Y.L. Xie, How to utilize the foreign iron ore resources effectively, Met. Mine Des. Constr., 34(2002), No. 6, p. 18.
    [17]
    Y. Yu, L. Li, J.Y. Wang, K.Z. Li, and H. Wang, Phase transformation of Sn in tin-bearing iron concentrates by roasting with FeS2 in CO–CO2 mixed gases and its effects on Sn separation, J. Alloys Compd., 750(2018), p. 8. doi: 10.1016/j.jallcom.2018.03.404
    [18]
    R.J. Zhang, L. Li, and Y. Yu, Reduction roasting of tin-bearing iron concentrates using pyrite, ISIJ Int., 56(2016), No. 6, p. 953. doi: 10.2355/isijinternational.ISIJINT-2015-717
    [19]
    Y. Yu, L. Li, and X.L. Sang, Removing tin from tin-bearing iron concentrates with sulfidation roasting using high sulfur coal, ISIJ Int., 56(2016), No. 1, p. 57. doi: 10.2355/isijinternational.ISIJINT-2015-428
    [20]
    Y. Yu, L. Li, J.Y. Wang, J.C. Wang, and K.Z. Li, Sn separation from Sn-bearing iron concentrates by roasting with waste tire rubber in N2 + CO + CO2 mixed gases, J. Hazard. Mater., 371(2019), p. 440. doi: 10.1016/j.jhazmat.2019.03.034
    [21]
    S. Wang, Y.F. Guo, J.J. Fan, Y. He, T. Jiang, F. Chen, F.Q. Zheng, and L.Z. Yang, Initial stage of deposit formation process in a coal fired grate-rotary kiln for iron ore pellet production, Fuel Process. Technol., 175(2018), p. 54. doi: 10.1016/j.fuproc.2018.03.005
    [22]
    W.Z. Lv, D.X. Yu, J.Q. Wu, L. Zhang, and M.H. Xu, The chemical role of CO2 in pyrite thermal decomposition, Proc. Combust. Inst., 35(2015), No. 3, p. 3637. doi: 10.1016/j.proci.2014.06.066
    [23]
    Z.J. Su, Y.B. Zhang, B.B. Liu, Y.L. Zhou, T. Jiang, and G.H. Li, Reduction behavior of SnO2 in the tin-bearing iron concentrates under CO–CO2 atmosphere, Powder Technol., 292(2016), p. 251. doi: 10.1016/j.powtec.2015.12.047
    [24]
    F. Huang, L.Q. Zhang, B.J. Yi, Z.J. Xia, and C.G. Zheng, Transformation pathway of excluded mineral pyrite decomposition in CO2 atmosphere, Fuel Process. Technol., 138(2015), p. 814. doi: 10.1016/j.fuproc.2015.07.028
    [25]
    Y. Li, X.P. Gao, and H.W. Wu, Ash cenosphere from solid fuels combustion. Part 2: Significant role of ash cenosphere fragmentation in ash and particulate matter formation, Energy Fuels, 27(2013), No. 2, p. 822. doi: 10.1021/ef302148f
    [26]
    Y. Li and H.W. Wu, Ash cenosphere from solid fuels combustion. Part 1: An investigation into its formation mechanism using pyrite as a model fuel, Energy Fuels, 26(2012), No. 1, p. 130. doi: 10.1021/ef201173g
    [27]
    N.R. Urban, K. Ernst, and S. Bernasconi, Addition of sulfur to organic matter during early diagenesis of lake sediments, Geochim. Cosmochim. Acta, 63(1999), No. 6, p. 837. doi: 10.1016/S0016-7037(98)00306-8
    [28]
    P.S. Li, Y. Hu, W. Yu, Y.N. Yue, Q. Xu, S. Hu, N.S. Hu, and J. Yang, Investigation of sulfur forms and transformation during the co-combustion of sewage sludge and coal using X-ray photoelectron spectroscopy, J. Hazard. Mater., 167(2009), No. 1-3, p. 1126. doi: 10.1016/j.jhazmat.2009.01.115
    [29]
    M. Kozłowski, XPS study of reductively and non-reductively modified coals, Fuel, 83(2004), No. 3, p. 259. doi: 10.1016/j.fuel.2003.08.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(3169) PDF Downloads(87) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return