Cite this article as: |
Cheng-bin Wei, Xing-hao Du, Yi-ping Lu, Hui Jiang, Ting-ju Li, and Tong-min Wang, Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1312-1317. https://doi.org/10.1007/s12613-020-2042-z |
Yi-ping Lu E-mail: luyiping@dlut.edu.cn
Tong-min Wang E-mail: tmwang@dlut.edu.cn
We designed a novel Co-free AlCrFe2Ni2Ti0.5 high-entropy alloy (HEA) that features an excellent combination of strength and ductility in this study. The as-cast AlCrFe2Ni2Ti0.5 alloy showed equiaxed grains undergoing spinodal decomposition, which consisted of ultrafine-grained laminated body-centered cubic (bcc) phases and an ordered body-centered cubic (b2) phase, and some precipitates embedded in the b2 matrix. The bcc and b2 phases also feature a coherent interface. This unique structure impedes mobile dislocations and hinders the formation of cracks, thereby giving the AlCrFe2Ni2Ti0.5 HEA both high strength and plasticity. At room temperature, the as-cast AlCrFe2Ni2Ti0.5 alloy exhibited a compressive yield strength of 1714 MPa, an ultimate strength of 3307 MPa, and an elongation of 43%. These mechanical properties are superior to those of most reported HEAs.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[2] |
B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
|
[3] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
|
[4] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
|
[5] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
|
[6] |
G. Qin, S. Wang, R.R. Chen, X.Gong, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys, J. Mater. Sci. Technol., 34(2018), No. 2, p. 365. doi: 10.1016/j.jmst.2017.11.007
|
[7] |
Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, and X.F. Sun, The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1, J. Mater. Sci. Technol., 35(2019), No. 5, p. 902. doi: 10.1016/j.jmst.2018.09.067
|
[8] |
T.F. Yang, S.Q. Xia, W. Guo, R. Hu, J.D. Poplawsky, G. Sha, Y. Fang, Z.F. Yan, C.X. Wang, C.Y. Li, Y. Zhang, S.J. Zinkle, and Y.G. Wang, Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy, Scripta Mater., 144(2018), p. 31. doi: 10.1016/j.scriptamat.2017.09.025
|
[9] |
P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek, Discovery of a superconducting high-entropy alloy, Phys. Rev. Lett., 113(2014), No. 10, art. No. 107001. doi: 10.1103/PhysRevLett.113.107001
|
[10] |
K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, and H. Bei, Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity, Sci. Rep., 6(2016), art. No. 20159. doi: 10.1038/srep20159
|
[11] |
S. Varalakshmi, M. Kamaraj, and B.S. Murty, Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying, Mater. Sci. Eng. A, 527(2010), No. 4-5, p. 1027. doi: 10.1016/j.msea.2009.09.019
|
[12] |
T.M. Butler, K.J. Chaput, J.R. Dietrich, and O.N. Senkov, High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs), J. Alloys Compd., 729(2017), p. 1004. doi: 10.1016/j.jallcom.2017.09.164
|
[13] |
Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corros. Sci., 119(2017), p. 33. doi: 10.1016/j.corsci.2017.02.019
|
[14] |
S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, and Y. Yang, Corrosion resistant nanostructured eutectic high entropy alloy, Corros. Sci., 164(2020), art. No. 108315. doi: 10.1016/j.corsci.2019.108315
|
[15] |
C. Varvenne, A. Luque, and W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Mater., 118(2016), p. 164. doi: 10.1016/j.actamat.2016.07.040
|
[16] |
O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, and H.L. Fraser, Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, Mater. Des., 139(2018), p. 498. doi: 10.1016/j.matdes.2017.11.033
|
[17] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
|
[18] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 6, p. 534. doi: 10.1002/adem.200700240
|
[19] |
S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505. doi: 10.1063/1.3587228
|
[20] |
Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, J. Alloys Compd., 573(2013), p. 96. doi: 10.1016/j.jallcom.2013.03.253
|
[21] |
Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904. doi: 10.1063/1.2734517
|
[22] |
H.B. Xie, G.Z. Liu, J.J. Guo, M. Zhou, D.P. Liu, and W.Q. Mao, Effect of Ti addition on the microstructure and wear properties of AlFeCrCoCu high entropy alloy, Rare Met. Mater. Eng., 45(2016), No. 1, p. 145.
|
[23] |
H.B. Xie, G.Z. Liu, and J.J. Guo, Effects of Mn, Mo, V, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high entropy alloys, Chin. J. Nonferrous Metals, 25(2015), No. 1, p. 103. doi: 10.1016/S1003-6326(15)63584-1
|
[24] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, and C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362(2018), No. 6417, p. 933. doi: 10.1126/science.aas8815
|
[25] |
G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd., 591(2014), p. 11. doi: 10.1016/j.jallcom.2013.12.210
|
[26] |
Y. Dong, X.X. Gao, Y.P. Lu, T.M. Wang, and T.J. Li, A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties, Mater. Lett., 169(2016), p. 62. doi: 10.1016/j.matlet.2016.01.096
|
[27] |
Y. Zhang, X. Yang, and P.K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM, 64(2012), No. 7, p. 830. doi: 10.1007/s11837-012-0366-5
|
[28] |
S.G. Ma and Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 532(2012), p. 480. doi: 10.1016/j.msea.2011.10.110
|
[29] |
Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des., 57(2014), p. 67. doi: 10.1016/j.matdes.2013.12.048
|
[30] |
Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, and T.G. Nieh, Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions, Acta Mater., 147(2018), p. 213. doi: 10.1016/j.actamat.2018.01.050
|
[31] |
P. Wang, H.N. Cai, and X.W. Cheng, Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2–x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys, J. Alloys Compd., 662(2016), p. 20. doi: 10.1016/j.jallcom.2015.11.205
|
[32] |
P.H. Wu, N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, and X.J. Wang, Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys, Mater. Sci. Eng. A, 642(2015), p. 142. doi: 10.1016/j.msea.2015.06.061
|
[33] |
Z.Q. Fu, B.E. MacDonald, D.L. Zhang, B.Y. Wu, W.P. Chen, J. Ivanisenko, H. Hahn, and E.J. Lavernia, Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity, Scripta Mater., 143(2018), p. 108. doi: 10.1016/j.scriptamat.2017.09.023
|
[34] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509(2011), No. 20, p. 6043. doi: 10.1016/j.jallcom.2011.02.171
|
[35] |
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics, 84(2017), p. 153. doi: 10.1016/j.intermet.2017.01.007
|
[36] |
H.H. Diao, X. Xie, F. Sun, K.A. Dahmen, and P.K. Liaw, Mechanical properties of high-entropy alloys, [in] M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds., High-Entropy Alloys: Fundmentals and Applications, Springer, Cham, 2016, p. 181.
|