Jing Zhou, Dan-dan Nie, Xian-bo Jin, and Wei Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1703-1710. https://doi.org/10.1007/s12613-020-2050-z
Cite this article as:
Jing Zhou, Dan-dan Nie, Xian-bo Jin, and Wei Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1703-1710. https://doi.org/10.1007/s12613-020-2050-z
Research Article

Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis

+ Author Affiliations
  • Corresponding author:

    Wei Xiao    E-mail: 00030042@whu.edu.cn

  • Received: 27 February 2020Revised: 20 March 2020Accepted: 24 March 2020Available online: 26 March 2020
  • Pyrolysis of the Ta2O5/melamine mixture in molten chlorides is herein demonstrated as a facile and controllable method to nitridize and functionalize Ta2O5. The influence of the stoichiometry and composition of Ta2O5/melamine in molten salts on the nitridation process is rationalized to ensure the controllable preparation of Ta3N5 and Ta3N5/TaON. The characterization results, including scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy, all confirm the existence of the Ta3N5/TaON heterojunction, in which the TaON nanoparticles are closely anchored to the Ta3N5 nanorods. Benefiting from its composition and structure, the Ta3N5/TaON composites show enhanced photocatalytic activity for the degradation of methylene blue. The present study highlights that the molten salt method using a solid nitrogen source can be a new technique for rationalizing the design of nitrides and oxynitrides.

  • loading
  • [1]
    A. Joseph, K. Vellayan, B. González, M.A. Vicente, and A. Gil, Effective degradation of methylene blue in aqueous solution using Pd-supported Cu-doped Ti-pillared montmorillonite catalyst, Appl. Clay Sci., 168(2019), p. 7. doi: 10.1016/j.clay.2018.10.009
    [2]
    A. Molla, Y.Y. Li, B. Mandal, S.G. Kang, S.H. Hur, and J.S. Chung, Selective adsorption of organic dyes on graphene oxide: theoretical and experimental analysis, Appl. Surf. Sci., 464(2019), p. 170. doi: 10.1016/j.apsusc.2018.09.056
    [3]
    A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z.H. Nazli, H.N. Bhatti, and S. Nouren, Dyes adsorption using clay and modified clay: A review, J. Mol. Liq., 256(2018), p. 395. doi: 10.1016/j.molliq.2018.02.034
    [4]
    S.Y. Bao, Q.F. Wu, S.Z. Chang, B.Z. Tian, and J.L. Zhang, Z-scheme CdS‒Au‒BiVO4 with enhanced photocatalytic activity for organic contaminant decomposition, Catal. Sci. Technol., 7(2017), No. 1, p. 124. doi: 10.1039/C6CY01980C
    [5]
    H.X. Liu, X.G. Wei, T.D. Li, Z.Y. Jiang, Q.F. Niu, and H.L. Zhou, Mosaic structure ZnO formed by secondary crystallization with enhaned photocatalytic performance, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2033-0.
    [6]
    M.E. Borges, M. Sierra, E. Cuevas, R.D. García, and P. Esparza, Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment, Sol. Energy, 135(2016), p. 527. doi: 10.1016/j.solener.2016.06.022
    [7]
    S. Garcia-Segura and E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C, 31(2017), p. 1. doi: 10.1016/j.jphotochemrev.2017.01.005
    [8]
    J.G. Hou, Y.Z. Wu, S.Y. Cao, F. Liang, Z.S. Lin, Z.M. Gao, and L.C. Sun, In situ phase-induced spatial charge separation in core-shell oxynitride nanocube heterojunctions realizing robust solar water splitting, Adv. Energy Mater., 7(2017), No. 17, art. No. 1700171. doi: 10.1002/aenm.201700171
    [9]
    Y.D. Hu, G. Chen, C.M. Li, Y.S. Zhou, J.X. Sun, S. Hao, and Z.H. Han, Fabrication of {010} facet dominant BiTaO4 single-crystal nanoplates for efficient photocatalytic performance, J. Mater. Chem. A, 4(2016), No. 14, p. 5274. doi: 10.1039/C6TA00468G
    [10]
    L. Ge, C.C. Han, X.L. Xiao, and L.L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2‒g-C3N4 with enhanced hydrogen evolution activity, Int. J. Hydrogen Energy, 38(2013), No. 17, p. 6960. doi: 10.1016/j.ijhydene.2013.04.006
    [11]
    Y.M. Hunge, A.A. Yadav, A.G. Dhodamani, N. Suzuki, C. Terashima, A. Fujishima, and V.L. Mathe, Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination, Ultrason. Sonochem., 61(2020), art. No. 104849. doi: 10.1016/j.ultsonch.2019.104849
    [12]
    L. Tian, J.Y. Li, F. Liang, J.K. Wang, S.S. Li, H.J. Zhang, and S.W. Zhang, Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater, Appl. Catal. B, 225(2018), p. 307. doi: 10.1016/j.apcatb.2017.11.082
    [13]
    J.H. Sun, S.Y. Dong, Y.K. Wang, and S.P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater., 172(2009), No. 2-3, p. 1520. doi: 10.1016/j.jhazmat.2009.08.022
    [14]
    T.F. Wang, A. Arakaki, and D. Kisailus, Template-free synthesis of Ta3N5 hollow nanospheres as a visible-light-driven photocatalyst, J. Phys. Commun., 3(2019), No. 7, art. No. 075010. doi: 10.1088/2399-6528/ab3233
    [15]
    S.M. Wang, Z.Y. Li, Y. Guan, L. Lu, Z. Shi, P. Weng, S.C. Yan, and Z.G. Zou, Visible light driven TaON/V2O5 heterojunction photocatalyst for deep elimination of volatile-aromatic compounds, Appl. Catal. B, 245(2019), p. 220. doi: 10.1016/j.apcatb.2018.12.067
    [16]
    Y. Kado, R. Hahn, C.Y. Lee, and P. Schmuki, Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure, Electrochem. Commun., 17(2012), p. 67. doi: 10.1016/j.elecom.2012.01.028
    [17]
    T.D.C. Nguyen, T.P.L.C. Nguyen, H.T.T. Mai, V.D. Dao, M.P. Nguyen, and V.N. Nguyen, Novel photocatalytic conversion of CO2 by vanadium-doped tantalum nitride for valuable solar fuel production, J. Catal., 352(2017), p. 67. doi: 10.1016/j.jcat.2017.04.020
    [18]
    Z. Shi, J.Y. Feng, H. Shan, X. Wang, Z. Xu, H.T. Huang, Q.F. Qian, S.C. Yan, and Z.G. Zou, Low onset potential on single crystal Ta3N5 polyhedron array photoanode with preferential exposure of {001} facets, Appl. Catal. B, 237(2018), p. 665. doi: 10.1016/j.apcatb.2018.06.037
    [19]
    D.H.K. Murthy, H. Matsuzaki, Z. Wang, Y. Suzuki, T. Hisatomi, K. Seki, Y. Inoue, K. Domen, and A. Furube, Origin of the overall water splitting activity of Ta3N5 revealed by ultrafast transient absorption spectroscopy, Chem. Sci., 10(2019), No. 20, p. 5353. doi: 10.1039/C9SC00217K
    [20]
    R.Z. Chen, C. Zhen, Y.Q. Yang, X.D. Sun, J.T.S. Irvine, L.Z. Wang, G. Liu, and H.M. Cheng, Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell, Nano Energy, 59(2019), p. 683. doi: 10.1016/j.nanoen.2019.03.009
    [21]
    J.Y. Feng, H.T. Huang, T. Fang, X. Wang, S.C. Yan, W.J. Luo, T. Yu, Y.X. Zhao, Z.S. Li, and Z.G. Zou, Defect egineering in semiconductors: manipulating nonstoichiometric defects and understanding their impact in oxynitrides for solar energy conversion, Adv. Funct. Mater., 29(2019), No. 11, art. No. 1808389. doi: 10.1002/adfm.201808389
    [22]
    P. Zhang, J.J. Zhang, and J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43(2014), No. 13, p. 4395. doi: 10.1039/C3CS60438A
    [23]
    Q.S. Gao, C. Giordano, and M. Antonietti, Controlled synthesis of tantalum oxynitride and nitride nanoparticles, Small, 7(2011), No. 23, p. 3334. doi: 10.1002/smll.201101207
    [24]
    Q.S. Gao, S.N. Wang, Y.C. Ma, Y. Tang, C. Giordano, and M. Antonietti, SiO2-surface-assisted controllable synthesis of TaON and Ta3N5 nanoparticles for alkene epoxidation, Angew. Chem. Int. Ed., 51(2012), No. 4, p. 961. doi: 10.1002/anie.201107216
    [25]
    B. Niu, B.Y. Liu, and Z.M. Xu, Controllable synthesis of high-efficient TaOxNy and Ta3N5 photocatalysts through vacuum nitriding using melamine as a nitrogen source, J. Alloys Compd., 809(2019), art. No. 151846. doi: 10.1016/j.jallcom.2019.151846
    [26]
    S.P. Adhikari, Z.D. Hood, K.L. More, I. Ivanov, L.F. Zhang, M. Gross, and A. Lachgar, Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites, RSC Adv., 5(2015), No. 68, p. 54998. doi: 10.1039/C5RA06563A
    [27]
    Y. Kanigaridou, A. Petala, Z. Frontistis, M. Antonopoulou, M. Solakidou, I. Konstantinou, Y. Deligiannakis, D. Mantzavinos, and D.I. Kondarides, Solar photocatalytic degradation of bisphenol A with CuOx/BiVO4: Insights into the unexpectedly favorable effect of bicarbonates, Chem. Eng. J., 318(2017), p. 39. doi: 10.1016/j.cej.2016.04.145
    [28]
    W. Weng, J. Zhou, D. Gu, and W. Xiao, Thermoelectrochemical formation of Fe/Fe3C@hollow N-doped carbon in molten salts for enhanced catalysis, J. Mater. Chem. A, 8(2020), p. 4800. doi: 10.1039/D0TA00565G
    [29]
    W. Weng, Z. Wang, Z.C. Guo, S.Q. Jiao, and M.Y. Wang, Enhanced electrodeposition and separation of metallic Cr from soluble K2CrO4 on a liquid Zn, J. Energy Chem., 40(2020), p. 204. doi: 10.1016/j.jechem.2019.04.021
    [30]
    W. Xiao, J. Zhou, L. Yu, D. Wang, and X.W. Lou, Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties, Angew. Chem. Int. Ed., 55(2016), No. 26, p. 7427. doi: 10.1002/anie.201602653
    [31]
    N. Li, J. Zhou, Z.Q. Sheng, and W. Xiao, Molten salt-mediated formation of g-C3N4‒MoS2 for visible-light-driven photocatalytic hydrogen evolution, Appl. Surf. Sci., 430(2018), p. 218. doi: 10.1016/j.apsusc.2017.08.086
    [32]
    L. Kartal, M.B. Daryal, G.K. Şireli, and S. Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258. doi: 10.1007/s12613-019-1867-9
    [33]
    L. Costa and G. Camino, Thermal behaviour of melamine, J. Therm. Anal., 34(1988), No. 2, p. 423. doi: 10.1007/BF01913181
    [34]
    N. McLamb, P.P. Sahoo, L. Fuoco, and P.A. Maggard, Flux growth of single-crystal Na2Ta4O11 particles and their photocatalytic hydrogen production, Cryst. Growth Des., 13(2013), No. 6, p. 2322. doi: 10.1021/cg301859d
    [35]
    S.S. Ma, T. Hisatomi, K. Maeda, Y. Moriya, and K. Domen, Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts, J. Am. Chem. Soc., 134(2012), No. 49, p. 19993. doi: 10.1021/ja3095747
    [36]
    Z. Shi, Z. Xu, J.Y. Feng, H.T. Huang, Q.F. Qian, S.C. Yan, and Z.G. Zou, Molten salt-assisted a-axis-oriented growth of Ta3N5 nanorod arrays with enhanced charge transport for efficient photoelectrochemical water oxidation, CrystEngComm, 20(2018), No. 36, p. 5364. doi: 10.1039/C8CE01016A
    [37]
    Y.W. Kim, S. Cha, I. Kwak, I.S. Kwon, K. Park, C.S. Jung, E.H. Cha, and J. Park, Surface-modified Ta3N5 nanocrystals with boron for enhanced visible-light-driven photoelectrochemical water splitting, ACS Appl. Mater. Inter., 9(2017), No. 42, p. 36715.
    [38]
    L. Lu, S.M. Wang, C.G. Zhou, Z. Shi, H. Zhu, Z.Y. Xin, X.H. Wang, S.C. Yan, and Z.G. Zou, Surface chemistry imposes selective reduction of CO2 to CO over Ta3N5/LaTiO2N photocatalyst, J. Mater. Chem. A, 6(2018), No. 30, p. 14838. doi: 10.1039/C8TA05339A
    [39]
    N.T.P. Le Chi, N.T. Dieu Cam, D. Van Thuan, T.T. Truong, N.T. Thanh Truc, C. Van Hoang, T.T. Thu Phuong, T.D. Pham, M.H. Thanh Tung, N.T. Minh Thu, N.M. Phuong, and V.N. Nguyen, Synthesis of vanadium doped tantalum oxy-nitride for photocatalytic reduction of carbon dioxide under visible light, Appl. Surf. Sci., 467-468(2019), p. 1249. doi: 10.1016/j.apsusc.2018.10.260
    [40]
    I. Narkeviciute and T.F. Jaramillo, Effects of Ta3N5 morphology and composition on the performance of Si‒Ta3N5 photoanodes, Solar RRL, 1(2017), No. 11, art. No. 1700121. doi: 10.1002/solr.201700121
    [41]
    S.T. Bae, H. Shin, S. Lee, D.W. Kim, H.S. Jung, and K.S. Hong, Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution, React. Kinet. Mech. Catal., 106(2011), No. 1, p. 67.
    [42]
    J. Gao, J.Y. Yu, L. Zhou, J. Muhammad, X.L. Dong, Y.N. Wang, H.T. Yu, X. Quan, S.J. Li, and Y.G. Jung, Interface evolution in the platelet-like SiC@C and SiC@SiO2 monocrystal nanocapsules, Nano Res., 10(2017), No. 8, p. 2644. doi: 10.1007/s12274-017-1467-9
    [43]
    H.H. Wang, W.X. Liu, J. Ma, Q. Liang, W. Qin, P.O. Lartey, and X.J. Feng, Design of GO/TiO2 one-dimensional photonic crystal photocatalytic photocatalysts with improved photocatalytic activities for tetracycline, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
    [44]
    W. Weng, B.M. Jiang, Z. Wang, and W. Xiao, In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions, Sci. Adv., 6(2020), No. 9, art. No. 9278. doi: 10.1126/sciadv.aay9278
    [45]
    Z. Wang, J.G. Hou, S.Q. Jiao, K. Huang, and H.M. Zhu, In situ chemical reduction of the Ta3N5 quantum dots coupled TaON hollow spheres heterojunction photocatalyst for water oxidation, J. Mater. Chem, 22(2012), No. 41, p. 21972. doi: 10.1039/c2jm35374a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(3713) PDF Downloads(120) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return