Jie Luo, Xin Li, Fu-jie Zhang, Song Chen, and Ding Ren, Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1057-1062. https://doi.org/10.1007/s12613-020-2056-6
Cite this article as:
Jie Luo, Xin Li, Fu-jie Zhang, Song Chen, and Ding Ren, Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1057-1062. https://doi.org/10.1007/s12613-020-2056-6
Research Article

Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization

+ Author Affiliations
  • Corresponding author:

    Ding Ren    E-mail: rending2k@scu.edu.cn

  • Received: 3 December 2019Revised: 28 March 2020Accepted: 30 March 2020Available online: 3 April 2020
  • Monoclinic SrAl2Si2O8 ceramics for Sr immobilization were prepared by a liquid-phase sintering method. The sintering temperature, mineral phase composition, microstructure, flexural strength, bulk density, and Sr ion leaching characteristics of the SrAl2Si2O8 ceramics were investigated. A crystalline monoclinic SrAl2Si2O8 phase formed through liquid-phase sintering at 1223 K. The introduction of four flux agents (B2O3, CaO·2B2O3, SrO·2B2O3, and BaO·2B2O3) to the SrAl2Si2O8 ceramics not only reduced the densification temperature and decreased the volatilization of Sr during high-temperature sintering but also impacted the mechanical properties of the ceramics. Product consistency tests showed that the leaching concentration of Sr ions in the sample with flux agent B2O3 was the lowest, whereas that of Sr ions in the sample with flux agent BaO·2B2O3 was the highest. These results show that the leaching concentration of Sr ions depends largely on the amorphous phase in the ceramics. Meanwhile, the formation of mineral analog ceramics containing Sr is an important factor to improve Sr immobilization.

  • loading
  • [1]
    T. Hijikata, M. Sakata, H. Miyashiro, K. Kinoshita, T. Higashi, and T. Tamai, Development of pyrometallurgical partitioning of actinides from high-level radioactive waste using a reductive extraction step, Nucl. Technol., 115(1996), No. 1, p. 114. doi: 10.13182/NT96-A35280
    [2]
    G.R. Choppin, Actinide speciation in the environment, J. Radioanal. Nucl. Chem., 273(2007), No. 3, p. 695. doi: 10.1007/s10967-007-0933-3
    [3]
    M.Y. Alyapyshev, V.A. Babain, and Y.A. Ustynyuk, Recovery of minor actinides from high-level wastes: Modern trends, Russ. Chem. Rev., 85(2016), No. 9, p. 943. doi: 10.1070/RCR4589
    [4]
    C.M. Jantzen, W.E. Lee, and M.I. Ojovan, Radioactive waste conditioning, immobilization, and encapsulation processes and technologies: Overview and advances, [in] W.E. Lee, M.I. Ojovan, and C.M. Jantzen, eds., Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience, Woodhead Publishing, Cambridge, 2013, p. 171.
    [5]
    R.S. Forsyth and L.O. Werme, Spent fuel corrosion and dissolution, J. Nucl. Mater., 190(1992), p. 3. doi: 10.1016/0022-3115(92)90071-R
    [6]
    I.W. Donald, B.L. Metcalfe, and R.N.J. Taylor, The immobilization of high level radioactive wastes using ceramics and glasses, J. Mater. Sci., 32(1997), No. 22, p. 5851. doi: 10.1023/A:1018646507438
    [7]
    L. Wang and T.X. Liang, Ceramics for high level radioactive waste solidification, J. Adv. Ceram., 1(2012), No. 3, p. 194. doi: 10.1007/s40145-012-0019-8
    [8]
    W.E. Lee, M.I. Ojovan, M.C. Stennett, and N.C. Hyatt, Immobilization of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram., 105(2006), No. 1, p. 3. doi: 10.1179/174367606X81669
    [9]
    E.R. Vance, B.D. Begg, and D.J. Gregg, Immobilization of high-level radioactive waste and used nuclear fuel for safe disposal in geological repository systems, [in] M.J. Apted and J. Ahn, eds., Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed., Woodhead Publishing, Cambridge, 2017, p. 269.
    [10]
    C. Ferone, B. Liguori, A. Marocco, S. Anaclerio, M. Pansini, and C. Colella, Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A, Microporous Mesoporous Mater., 134(2010), No. 1-3, p. 65. doi: 10.1016/j.micromeso.2010.05.008
    [11]
    C.M. López-Badillo, J. López-Cuevas, C.A. Gutiérrez-Chavarría, J.L. Rodríguez-Galicia, and M.I. Pech-Canul, Synthesis and characterization of BaAl2Si2O8 using mechanically activated precursor mixtures containing coal fly ash, J. Eur. Ceram. Soc., 33(2013), No. 15-16, p. 3287. doi: 10.1016/j.jeurceramsoc.2013.05.014
    [12]
    Y. Kobayashi and M. Inagaki, Preparation of reactive Sr-celsian powders by solid-state reaction and their sintering, J. Eur. Ceram. Soc., 24(2004), No. 2, p. 399. doi: 10.1016/S0955-2219(03)00215-2
    [13]
    B. Liguori, C. Ferone, S. Anaclerio, and C. Colella, Monoclinic Sr-celsian by thermal treatment of Sr-exchanged zeolite A, LTA-type framework, Solid State Ionics, 179(2008), No. 40, p. 2358. doi: 10.1016/j.ssi.2008.09.006
    [14]
    S. Chen and D.G. Zhu, Low-temperature sintering behaviour and properties of monoclinic-SrAl2Si2O8 ceramics prepared via an aqueous suspension milling process, J. Mater. Sci.: Mater. Electron., 27(2016), No. 11, p. 11127. doi: 10.1007/s10854-016-5230-x
    [15]
    Z.H. Xu, Z. Jiang, D.D. Wu, X. Peng, Y.H. Xu, N. Li, Y.J. Qi, and P. Li, Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer, Ceram. Int., 43(2017), No. 5, p. 4434. doi: 10.1016/j.ceramint.2016.12.092
    [16]
    ASTM International, ASTM Standard C1285-14: Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), ASTM International, West Conshohocken, 2014.
    [17]
    E.M. Levin, H.F. McMurdie, and F.P. Hall, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, 1956.
    [18]
    E.M. Levin and H.F. McMurdie, The system BaO–B2O3, J. Am. Ceram. Soc., 32(1949), No. 3, p. 99. doi: 10.1111/j.1151-2916.1949.tb18932.x
    [19]
    H. Witzmann and G. Herzog, Luminescence-optical behaviour of alkaline earth borate luminophors, Z. Phys. Chem., 225(1964), p. 197.
    [20]
    R.M. German, S. Farooq, and C.M. Kipphut, Kinetics of liquid sintering, Mater. Sci. Eng. A, 105-106(1988), p. 215. doi: 10.1016/0025-5416(88)90499-5
    [21]
    S. Chen, D.G. Zhu, and X.S. Cai, Low-temperature densification sintering and properties of monoclinic-SrAl2Si2O8 ceramics, Metall. Mater. Trans. A, 45(2014), No. 9, p. 3995. doi: 10.1007/s11661-014-2344-8
    [22]
    S. Rajesh, H. Jantunen, M. Letz, and S. Pichler-Willhelm, Low temperature sintering and dielectric properties of alumina-filled glass composites for LTCC applications, Int. J. Appl. Ceram. Technol., 9(2012), No. 1, p. 52. doi: 10.1111/j.1744-7402.2011.02684.x
    [23]
    S.D. Ross and M. Finkelstein, Barium Borate Preparation, United States Patent, Appl. 4897249, 1990.
    [24]
    S. Chen, D.G. Zhu, P.Q. Sun, and H.L. Sun, Sintering behavior and dielectric properties of SrB2Si2O8 ceramics, J. Mater. Sci.: Mater. Electron., 24(2013), No. 11, p. 4593. doi: 10.1007/s10854-013-1448-z
    [25]
    H. Scholze, Glass: Nature, Structure, and Properties, Springer, New York, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(3825) PDF Downloads(41) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return