Diana Cholico-González, Noemí Ortiz Lara, Mario Alberto Sánchez Miranda, Ricardo Morales Estrella, Ramiro Escudero García, and Carlos A. León Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 603-611. https://doi.org/10.1007/s12613-020-2079-z
Cite this article as:
Diana Cholico-González, Noemí Ortiz Lara, Mario Alberto Sánchez Miranda, Ricardo Morales Estrella, Ramiro Escudero García, and Carlos A. León Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 603-611. https://doi.org/10.1007/s12613-020-2079-z
Research Article

Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents

+ Author Affiliations
  • Corresponding author:

    Noemí Ortiz Lara    E-mail: lartiz2005@hotmail.com

  • Received: 21 December 2019Revised: 17 April 2020Accepted: 21 April 2020Available online: 24 April 2020
  • The reduction behavior and metallization degree of magnetite concentrate with agave bagasse were investigated in an inert atmosphere. The effects of temperature, biomass content, and residence time on reduction experiments and metallization degree were investigated by X-ray diffraction and scanning electron microscopy. Compared with other types of biomass, agave bagasse had lower contents of nitrogen, sulfur, and ash. X-ray diffraction analysis showed that the metallization degree improved with increasing temperature and biomass content. Complete metallization was achieved at 1100°C for 30 min with 65:35 and 50:50 ratios of the magnetite concentrate to the agave bagasse. These results demonstrate that agave bagasse promotes the efficient metallization of magnetite concentrate without the external addition of a reducing agent. Therefore, this biomass is a technical suitable alternative to replace fossil fuels in steelmaking.

  • loading
  • [1]
    D.B. Guo, L.D. Zhu, S. Guo, B.H. Cui, S.P. Luo, M. Laghari, Z.H. Chen, C.F. Ma, Y. Zhou, J. Chen, B. Xiao, M. Hu, and S.Y. Luo, Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer, Fuel Process. Technol., 148(2016), p. 276. doi: 10.1016/j.fuproc.2016.03.009
    [2]
    J.P.S.G. de Alencar, V.G. de Resende, and L.F.A. de Castro, Effect of temperature on morphology of metallic iron and formation of clusters of iron ore pellets, Metall. Mater. Trans. B., 47(2016), No. 1, p. 85. doi: 10.1007/s11663-015-0471-2
    [3]
    E. Mousa, C. Wang, J. Riesbeck, and M. Larsson, Biomass applications in iron and steel industry: An overview of challenges and opportunities, Renewable Sustainable Energy Rev., 65(2016), p. 1247. doi: 10.1016/j.rser.2016.07.061
    [4]
    R.F. Wei, L.L. Zhang, D.Q. Cang, J.X. Li, X.W. Li, and C.C. Xu, Current status and potential of biomass utilization in ferrous metallurgical industry, Renewable Sustainable Energy Rev., 68(2017), p. 511. doi: 10.1016/j.rser.2016.10.013
    [5]
    H. Konishi, K. Ichikawa, and T. Usui, Effect of residual volatile matter on reduction of iron oxide in semi-charcoal composite pellets, ISIJ Int., 50(2010), No. 3, p. 386. doi: 10.2355/isijinternational.50.386
    [6]
    U. Srivastava, S.K. Kawatra, and T.C. Eisele, Production of pig iron by utilizing biomass as a reducing agent, Int. J. Miner. Process., 119(2013), p. 51. doi: 10.1016/j.minpro.2012.12.008
    [7]
    M. Gan, X.H. Fan, X.L. Chen, Z.Y. Ji, W. Lv, Y. Wang, Z.Y. Yu, and T. Jiang, Reduction of pollutant emission in iron ore sintering process by applying biomass fuels, ISIJ Int., 52(2012), No. 9, p. 1574. doi: 10.2355/isijinternational.52.1574
    [8]
    T. Kawaguchi and M. Hara, Utilization of biomass for iron ore sintering, ISIJ Int., 53(2013), No. 9, p. 1599. doi: 10.2355/isijinternational.53.1599
    [9]
    S.J. Street, G.A. Brooks, and H.K. Worner, Recent developments in the environment process, Can. Metall. Q., 36(1997), No. 5, p. 333. doi: 10.1179/cmq.1997.36.5.333
    [10]
    Y. Ueki, R. Yoshiie, I. Naruse, K.I. Ohno, T. Maeda, K. Nishioka, and M. Shimizu, Reaction behavior during heating biomass materials and iron oxide composites, Fuel, 104(2013), p. 58. doi: 10.1016/j.fuel.2010.09.019
    [11]
    V. Strezov, Iron ore reduction using sawdust: Experimental analysis and kinetic modelling, Renewable Energy, 31(2006), No. 12, p. 1892. doi: 10.1016/j.renene.2005.08.032
    [12]
    R.Z. Abd Rashid, H. Mohd. Salleh, M.H. Ani, N.A. Yunus, T. Akiyama, and H. Purwanto, Reduction of low grade iron ore pellet using palm kernel shell, Renewable Energy, 63(2014), p. 617. doi: 10.1016/j.renene.2013.09.046
    [13]
    P. Yuan, B.X. Shen, D.P. Duan, G. Adwek, X. Mei, and F.J. Lu, Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process, Energy, 141(2017), p. 472. doi: 10.1016/j.energy.2017.09.058
    [14]
    M. Zandi, M. Martinez-Pacheco, and T.A.T. Fray, Biomass for iron ore sintering, Miner. Eng., 23(2010), No. 14, p. 1139. doi: 10.1016/j.mineng.2010.07.010
    [15]
    N.A. Yunus, M.H. Ani, H. Mohd. Salleh, R.Z. Abd Rashid, T. Akiyama, and H. Purwanto, Reduction of iron ore/empty fruit bunch char briquette composite, ISIJ Int., 53(2013), No. 10, p. 1749. doi: 10.2355/isijinternational.53.1749
    [16]
    M.C. Cedeño, Tequila Production, Crit. Rev. Biotechnol., 15(1995), No. 1, p. 1. doi: 10.3109/07388559509150529
    [17]
    J. de J. Montoya-Rosales, D.K. Olmos-Hernández, R. Palomo-Briones, V. Montiel-Corona, A.G. Mari, and E. Razo-Flores, Improvement of continuous hydrogen production using individual and binary enzymatic hydrolysates of agave bagasse in suspended-culture and biofilm reactors, Bioresour. Technol., 283(2019), p. 251. doi: 10.1016/j.biortech.2019.03.072
    [18]
    G. Iñiguez-Covarrubias, S.E. Lange, and R.M. Rowell, Utilization of byproducts from the tequila industry: Part 1: Agave bagasse as a raw material for animal feeding and fiberboard production, Bioresour. Technol., 77(2001), No. 1, p. 25. doi: 10.1016/S0960-8524(00)00137-1
    [19]
    G. Iñiguez-Covarrubias, R. Díaz-Teres, R. Sanjuan-Dueñas, J. Anzaldo-Hernández, and R.M. Rowell, Utilization of by-products from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves, Bioresour. Technol., 77(2001), No. 2, p. 101. doi: 10.1016/S0960-8524(00)00167-X
    [20]
    ASTM International, ASTM D 2016 - 74: Standard Test Method for Moisture in Wood, ASTM International, West Conshohocken, 2003.
    [21]
    ASTM International, ASTM D 1102-84: Standard Test Method for Ash in Wood, ASTM International, West Conshohocken, 2001.
    [22]
    ASTM International, ASTM D 1762-84: Standard Test Method for Chemical Analysis of Wood Charcoal, ASTM International, West Conshohocken, 2001.
    [23]
    ASTM International, ASTM D 3172-89: Standard Practice for Proximate Analysis of Coal and Coke, ASTM International, West Conshohocken, 2002.
    [24]
    M.M. Parascanu, F. Sandoval-Salas, G. Soreanu, J.L. Valverde, and L. Sanchez-Silva, Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes, Renewable Sustainable Energy Rev., 71(2017), p. 509. doi: 10.1016/j.rser.2016.12.079
    [25]
    I. Obernberger, T. Brunner, and G. Bärnthaler, Chemical properties of solid biofuels—significance and impact, Biomass and Bioenergy, 30(2006), No. 11, p. 973. doi: 10.1016/j.biombioe.2006.06.011
    [26]
    L.M. Lu, M. Adam, M. Kilburn, S. Hapugoda, M. Somerville, S. Jahanshahi, and J.G. Mathieson, Substitution of charcoal for coke breeze in iron ore sintering, ISIJ Int., 53(2013), No. 9, p. 1607. doi: 10.2355/isijinternational.53.1607
    [27]
    K. Akhtar, A. Tahmasebi, L. Tian, J.L. Yu, and J. Lucas, An experimental study of direct reduction of hematite by lignite char, J. Therm. Anal. Calorim., 123(2016), No. 2, p. 1111. doi: 10.1007/s10973-015-5062-6
    [28]
    E. Tronc, C.A. Hernández-Escobar, R. Ibarra-Gómez, A. Estrada-Monje, J. Navarrete-Bolaños, and E.A. Zaragoza-Contreras, Blue agave fiber esterification for the reinforcement of thermoplastic composites, Carbohydr. Polym., 67(2007), No. 2, p. 245. doi: 10.1016/j.carbpol.2006.05.027
    [29]
    A. Liñán-Montes, S.M. de la Parra-Arciniega, M.T. Garza-González, R.B. García-Reyes, E. Soto-Regalado, and F.J. Cerino-Córdova, Characterization and thermal analysis of agave bagasse and malt spent grain, J. Therm. Anal. Calorim., 115(2014), No. 1, p. 751. doi: 10.1007/s10973-013-3321-y
    [30]
    J.A. Perez-Pimienta, M.G. Lopez-Ortega, J.A. Chavez-Carvayar, P. Varanasi, V. Stavila, G. Cheng, S. Singh, and B.A. Simmons, Characterization of agave bagasse as a function of ionic liquid pretreatment, Biomass Bioenergy, 75(2015), p. 180. doi: 10.1016/j.biombioe.2015.02.026
    [31]
    G.R. Filho, S.F. da Cruz, D. Pasquini, D.A. Cerqueira, V. de Souza Prado, and R.M.N. de Assunção, Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse, J. Membr. Sci., 177(2000), No. 1-2, p. 225. doi: 10.1016/S0376-7388(00)00469-5
    [32]
    J.G. Vieira, G. Rodrigues Filho, C. da S. Meireles, F.A.C. Faria, D.D. Gomide, D. Pasquini, S.F. da Cruz, R.M.N. de Assunção, and L.A. de C. Motta, Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive, Polímeros, 22(2012), No. 1, p. 80.
    [33]
    S. Kestur G., T.H.S. Flores-Sahagun, L.P. Dos Santos, J. Dos Santos, I. Mazzaro, and A. Mikowski, Characterization of blue agave bagasse fibers of Mexico, Composites Part A, 45(2013), p. 153. doi: 10.1016/j.compositesa.2012.09.001
    [34]
    J. Saucedo-Luna, A.J. Castro-Montoya, M.M. Martinez-Pacheco, C.R. Sosa-Aguirre, and J. Campos-Garcia, Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica, J. Ind. Microbiol. Biotechnol., 38(2011), No. 6, p. 725. doi: 10.1007/s10295-010-0853-z
    [35]
    H.P. Yang, R. Yan, H.P. Chen, C.G. Zheng, D.H. Lee, and D.T. Liang, In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin,, Energy Fuels, 20(2006), No. 1, p. 388. doi: 10.1021/ef0580117
    [36]
    H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, and C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86(2007), No. 12-13, p. 1781. doi: 10.1016/j.fuel.2006.12.013
    [37]
    T. Kan, V. Strezov, and T.J. Evans, Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters, Renewable Sustainable Energy Rev., 57(2016), p. 1126. doi: 10.1016/j.rser.2015.12.185
    [38]
    R.K. Mishra and K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol., 251(2018), p. 63. doi: 10.1016/j.biortech.2017.12.029
    [39]
    A. Demirbaş, Calculation of higher heating values of biomass fuels, Fuel, 76(1997), No. 5, p. 431. doi: 10.1016/S0016-2361(97)85520-2
    [40]
    L. Chávez-Guerrero and M. Hinojosa, Bagasse from the mezcal industry as an alternative renewable energy produced in arid lands, Fuel, 89(2010), No. 12, p. 4049. doi: 10.1016/j.fuel.2010.07.026
    [41]
    S.Y. Luo, C.J. Yi, and Y.M. Zhou, Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas, Renewable Energy, 36(2011), No. 12, p. 3332. doi: 10.1016/j.renene.2011.05.006
    [42]
    H. Purwanto, T. Shimada, R. Takahashi, and J. Yagi, Reduction rate of cement bonded laterite briquette with CO−CO2 gas, ISIJ Int., 41(2001), p. S31. doi: 10.2355/isijinternational.41.Suppl_S31
    [43]
    A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
    [44]
    Y. Man, J.X. Feng, F.J. Li, Q. Ge, Y.M. Chen, and J.Z. Zhou, Influence of temperature and time on reduction behavior in iron ore–coal composite pellets, Powder Technol., 256(2014), p. 361. doi: 10.1016/j.powtec.2014.02.039
    [45]
    J.M. Zeng, R. Xiao, H.Y. Zhang, Y.H. Wang, D.W. Zeng, and Z. Ma, Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production, Fuel Process. Technol., 168(2017), p. 116. doi: 10.1016/j.fuproc.2017.08.036
    [46]
    A.T. Ubando, W.H. Chen, and H.C. Ong, Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions, Energy, 180(2019), p. 968. doi: 10.1016/j.energy.2019.05.149
    [47]
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
    [48]
    C.K. Gupta, Chemical Metallurgy: Principles and Practice, Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
    [49]
    F. Habashi, Principles of Extractive Metallurgy, CRC Press, 1986.
    [50]
    N. Narçin, S. Aydln, K. Şeşen, and F. Dikeç, Redaction of iron ore pellets with domestic lignite coal in a rotary tube furnace, Int. J. Miner. Process., 43(1995), No. 1-2, p. 49. doi: 10.1016/0301-7516(94)00045-2
    [51]
    R. Merk and C.A. Pickles, Reduction of ilmenite by carbon monoxide, Can. Metall. Q., 27(1988), No. 3, p. 179. doi: 10.1179/cmq.1988.27.3.179
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(2780) PDF Downloads(62) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return