Juan Wang, Li-jun Yang, Xiao-chong Zhao, Pan Yang, Wei Cao, and Qing-song Huang, Highly efficient nanocatalyst Ni1Co9@graphene for hydrolytic dehydrogenation of sodium borohydride, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1976-1982. https://doi.org/10.1007/s12613-020-2090-4
Cite this article as:
Juan Wang, Li-jun Yang, Xiao-chong Zhao, Pan Yang, Wei Cao, and Qing-song Huang, Highly efficient nanocatalyst Ni1Co9@graphene for hydrolytic dehydrogenation of sodium borohydride, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1976-1982. https://doi.org/10.1007/s12613-020-2090-4
Research Article

Highly efficient nanocatalyst Ni1Co9@graphene for hydrolytic dehydrogenation of sodium borohydride

+ Author Affiliations
  • Corresponding author:

    Qing-song Huang    E-mail: qshuang@scu.edu.cn

  • Received: 21 March 2020Revised: 1 May 2020Accepted: 7 May 2020Available online: 9 May 2020
  • Bimetal materials derived from transition metals can be good catalyst candidates towards some specific reactions. When loaded on graphene (GP), these catalysts exhibit remarkable performance in the hydrolysis of sodium borohydride. To obtain such catalysts easily and efficiently, a simple thermal reduction strategy was used in this study, and NixCo10−x series bimetal catalysts were prepared. Among all the catalysts, Ni1Co9 exhibited the best catalytic performance. The turnover frequency (TOF) related to the total number of atoms within the bimetallic nanoparticles reached 603.82 mL·mmol−1·min−1 at 303 K. Furthermore, graphene was introduced as a supporting frame. The Ni1Co9@Graphene (Ni1Co9@GP) had a large surface area and high TOF, 25534 mL·mmol−1·min−1, at 303 K. The Ni1Co9@GP exhibited efficient catalytic properties for H2 generation in alkaline solution because of its high specific surface area. Moreover, the high kinetic isotope effect observed in the kinetic studies suggests that using D2O led to the oxidative addition of an O–H bond of water in the rate-determining step.

  • loading
  • [1]
    R. Chamoun, U.B. Demirci , and P. Miele, Cyclic dehydrogenation–(re)hydrogenation with hydrogen-storage materials: An overview, Energy. Technol., 3(2015), No. 2, p. 100. doi: 10.1002/ENTE.201402136
    [2]
    D.M.F. Santos and C.A.C. Sequeira, Sodium borohydride as a fuel for the future, Renewable Sustainable Energy Rev., 15(2011), No. 8, p. 3980. doi: 10.1016/j.rser.2011.07.018
    [3]
    U.B. Demirci, Impact of H.I. Schlesinger’s discoveries upon the course of modern chemistry on B−(N−)H hydrogen carriers, Int. J. Hydrogen Energy, 42(2017), No. 33, p. 21048. doi: 10.1016/j.ijhydene.2017.07.066
    [4]
    P.Y. Olu, A. Bonnefont, G. Braesch, V. Martin, E.R. Savinova, and M. Chatenet, Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes—Experimental and modelling insights, J. Power Sources, 375(2018), p. 300. doi: 10.1016/j.jpowsour.2017.07.061
    [5]
    H.L. Wang, J.M. Yan, Z.L. Wang, S.I. O, and Q. Jiang, Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature, J. Mater. Chem. A, 1(2013), No. 47, p. 14957. doi: 10.1039/c3ta13259e
    [6]
    C. Luo, F.Y. Fu, X.J. Yang, J.Y. Wei, C.L. Wang, J. Zhu, D.S. Huang, D. Astruc, and P.X. Zhao, Highly efficient and selective Co@ZIF-8 nanocatalyst for hydrogen release from sodium borohydride hydrolysis, ChemCatChem, 11(2019), No. 6, p. 1643. doi: 10.1002/cctc.201900051
    [7]
    B. Šljukić, D.M.F. Santos, C.A.C. Sequeira, and C.E. Banks, Analytical monitoring of sodium borohydride, Anal. Methods, 5(2013), No. 4, p. 829. doi: 10.1039/c2ay26077h
    [8]
    J.H. Sinfelt, Catalysis by alloys and bimetallic clusters, Acc. Chem. Res., 10(1977), No. 1, p. 15. doi: 10.1021/ar50109a003
    [9]
    A. Didehban, M. Zabihi, and J.R. Shahrouzi, Experimental studies on the catalytic behavior of alloy and core-shell supported Co–Ni bimetallic nano-catalysts for hydrogen generation by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 43(2018), No. 45, p. 20645. doi: 10.1016/j.ijhydene.2018.09.127
    [10]
    H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Inter. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
    [11]
    G.J. Hutchings and C.J. Kiely, Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition, Acc. Chem. Res., 46(2013), No. 8, p. 1759. doi: 10.1021/ar300356m
    [12]
    M. Takahashi, H. Koizumi, W.J. Chun, M. Kori, T. Imaoka, and K. Yamamoto, Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons, Sci. Adv., 3(2017), No. 7, art. No. e1700101. doi: 10.1126/sciadv.1700101
    [13]
    S.N. Li, R.X. Ma, and C.Y. Wang, Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 310. doi: 10.1007/s12613-018-1574-y
    [14]
    R. Ferrando, J. Jellinek, and R.L. Johnston, Nanoalloys: From theory to applications of alloy clusters and nanoparticles, Chem. Rev., 108(2008), p. 845. doi: 10.1021/cr040090g
    [15]
    F.F. Chen, K. Shen, J.Y. Chen, X.F. Yang, J. Cui, and Y.W. Li, General immobilization of ultrafine alloyed nanoparticles within metal-organic frameworks with high loadings for advanced synergetic catalysis, ACS Cent. Sci., 5(2019), No. 1, p. 176. doi: 10.1021/acscentsci.8b00805
    [16]
    Y.P. Guo and G.X. Lu, Graphene supported Co–Mo–P catalyst for efficient photocatalyzed hydrogen generation, Int. J. Hydrogen Energy, 41(2016), No. 16, p. 6706. doi: 10.1016/j.ijhydene.2016.03.065
    [17]
    D. Wang, J. Liu, J.B. Xi, J.Z. Jiang, and Z.W. Bai, Pd–Fe dual-metal nanoparticles confined in the interface of carbon nanotubes/N-doped carbon for excellent catalytic performance, Appl. Surf. Sci., 489(2019), p. 477. doi: 10.1016/j.apsusc.2019.06.039
    [18]
    Z.K. Cui, Y.P. Guo, and J.T. Ma, In situ synthesis of graphene supported Co–Sn–B alloy as an efficient catalyst for hydrogen generation from sodium borohydride hydrolysis, Int. J. Hydrogen Energy, 41(2016), No. 3, p. 1592. doi: 10.1016/j.ijhydene.2015.11.081
    [19]
    F. Li, Q.M. Li, and H. Kim, CoB/open-CNTs catalysts for hydrogen generation from alkaline NaBH4 solution, Chem. Eng. J., 210(2012), p. 316. doi: 10.1016/j.cej.2012.08.102
    [20]
    W.L. Niu, D.B. Ren, Y.Y. Han, Y.J. Wu, and X.L. Gou, Optimizing preparation of carbon supported cobalt catalyst for hydrogen generation from NaBH4 hydrolysis, J. Alloys Compd., 543(2012), p. 159. doi: 10.1016/j.jallcom.2012.07.099
    [21]
    H.R. Xue, J. Tang, H. Gong, H. Guo, X.L. Fan, T. Wang, J.P. He, and Y. Yamauchi, Fabrication of PdCo bimetallic nanoparticles anchored on three-dimensional ordered N-doped porous carbon as an efficient catalyst for oxygen reduction reaction, ACS Appl. Mater. Interfaces, 8(2016), No. 32, p. 20766. doi: 10.1021/acsami.6b05856
    [22]
    Y. Liang, H.B. Dai, L.P. Ma, P. Wang, and H.M. Cheng, Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst, Int. J. Hydrogen Energy, 35(2010), No. 7, p. 3023. doi: 10.1016/j.ijhydene.2009.07.008
    [23]
    L. Zhang, Z.X. Xie, and J.L. Gong, Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications, Chem. Soc. Rev., 45(2016), p. 3916. doi: 10.1039/C5CS00958H
    [24]
    A. Wong, Q. Liu, S. Griffin, A. Nicholls, and J.R. Regalbuto, Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports, Science, 358(2017), No. 6369, p. 1427. doi: 10.1126/science.aao6538
    [25]
    Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A.M. Nie, T.C. Pu, M. Rehwoldt, D.W. Yu, M.R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, and L.B. Hu, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science, 359(2018), No. 6383, p. 1489. doi: 10.1126/science.aan5412
    [26]
    S. Saha, V. Basak, A. Dasgupta, S. Ganguly, D. Banerjee, and K. Kargupta, Graphene supported bimetallic G–Co–Pt nanohybrid catalyst for enhanced and cost effective hydrogen generation, Int. J. Hydrogen Energy, 39(2014), No. 22, p. 11566. doi: 10.1016/j.ijhydene.2014.05.131
    [27]
    C.C. Chou, C.H. Hsieh, and B.H. Chen, Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts, Energy, 90(2015), p. 1973. doi: 10.1016/j.energy.2015.07.023
    [28]
    B.H. Liu and Q. Li, A highly active Co–B catalyst for hydrogen generation from sodium borohydride hydrolysis, Int. J. Hydrogen Energy, 33(2008), No. 24, p. 7385. doi: 10.1016/j.ijhydene.2008.09.055
    [29]
    Y.S. Wei, W. Meng, Y. Wang, Y.X. Gao, K.Z. Qi, and K. Zhang, Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts, Int. J. Hydrogen Energy, 42(2017), No. 9, p. 6072. doi: 10.1016/j.ijhydene.2016.11.134
    [30]
    H.B. Dai, Y. Liang, P. Wang, and H.M. Cheng, Amorphous cobalt-boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution, J. Power Sources, 177(2008), No. 1, p. 17. doi: 10.1016/j.jpowsour.2007.11.023
    [31]
    Y. Liang, P. Wang, and H.B. Dai, Hydrogen bubbles dynamic template preparation of a porous Fe–Co–B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution, J. Alloys Compd., 491(2010), No. 1-2, p. 359. doi: 10.1016/j.jallcom.2009.10.183
    [32]
    Q.M. Li, W. Yang, F. Li, A.L. Cui, and J. Hong, Preparation of CoB/ZIF-8 supported catalyst by single step reduction and its activity in hydrogen production, Int. J. Hydrogen Energy, 43(2018), No. 1, p. 271. doi: 10.1016/j.ijhydene.2017.11.105
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2522) PDF Downloads(36) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return