Xiao-yong Gao, Lin Zhang, Xuan-hui Qu, Xiao-wei Chen,  and Yi-feng Luan, Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1551-1559. https://doi.org/10.1007/s12613-020-2098-9
Cite this article as:
Xiao-yong Gao, Lin Zhang, Xuan-hui Qu, Xiao-wei Chen,  and Yi-feng Luan, Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1551-1559. https://doi.org/10.1007/s12613-020-2098-9
Research Article

Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting

+ Author Affiliations
  • Corresponding author:

    Lin Zhang    E-mail: zlin@ustb.edu.cn

  • Received: 20 January 2020Revised: 11 May 2020Accepted: 12 May 2020Available online: 15 May 2020
  • This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories. Three different crucibles were tested—MgO, Al2O3, and MgO–spinel. We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray diffraction. The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions (Al–Mg oxides and Al–Mg–Ti oxides), whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides. We observed a new MgAl2O4 phase at the inner wall of the MgO crucible, with the alloy melted in the MgO crucible exhibiting fewer inclusions. No new phase occurred at the inner wall of the Al2O3 crucible. We discuss the mechanism of interaction between the refractories and the Ni-based superalloy. Physical erosion was found to predominate in the Al2O3 crucible, whereas dissolution and chemical reactions dominated in the MgO crucible. No reaction was observed between three crucibles and the Ti of the melt although the Ti content (3.8wt%) was higher than that of Al (2.1wt%).
  • loading
  • [1]
    Z.C. Peng, G.F. Tian, J. Jiang, M.Z. Li, Y. Chen, J.W. Zou, and F.P.E. Dunne, Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy, Mater. Sci. Eng. A, 676(2016), p. 441. doi: 10.1016/j.msea.2016.08.101
    [2]
    M.J. Zhang, F.G. Li, B. Chen, and S.Y. Wang, Investigation of micro-indentation characteristics of PM nickel-base superalloy FGH96 using dislocation-power theory, Mater. Sci. Eng. A, 535(2012), p. 170. doi: 10.1016/j.msea.2011.12.060
    [3]
    D.D. Yang, Y. Shi, G.L. Miao, X.G. Yang, and D.Q. Shi, The study of the relationship between life limiting factor and stress level for FGH96, MATEC Web Conf., 165(2018), p. 22031. doi: 10.1051/matecconf/201816522031
    [4]
    B. Fang, G.F. Tian, Z. Ji, M.Y. Wang, C.C. Jia, and S.W. Yang, Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 657. doi: 10.1007/s12613-019-1774-0
    [5]
    Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F. Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493. doi: 10.1007/s12613-019-1756-2
    [6]
    G.L. Miao, X.G. Yang, and D.Q. Shi, Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature, Mater. Sci. Eng. A, 668(2016), p. 66. doi: 10.1016/j.msea.2016.05.034
    [7]
    J. Jiang, J. Yang, T.T. Zhang, F.P.E. Dunne, and T.B. Britton, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Mater., 97(2015), p. 367. doi: 10.1016/j.actamat.2015.06.035
    [8]
    M.H. Manjili and M. Halali, Removal of non-metallic inclusions from nickel base superalloys by electromagnetic levitation melting in a slag, Metall. Mater. Trans. B, 49(2018), No. 1, p. 61. doi: 10.1007/s11663-017-1137-z
    [9]
    J.D. Busch, J. Debarbadillo, and M. Krane, Flux entrapment and titanium nitride defects in electroslag remelting of INCOLOY alloys 800 and 825, Metall. Mater. Trans. A, 44(2013), No. 12, p. 5295. doi: 10.1007/s11661-013-1659-1
    [10]
    X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng, Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1596. doi: 10.1007/s11663-012-9723-6
    [11]
    H.E.O. Kellner, A.V. Karasev, O. Sundqvist, A. Memarpour, and P.G. Jönsson, Estimation of non-metallic inclusions in industrial Ni based alloys 825, Steel Res. Int., 88(2017), No. 4, p. 1. doi: 10.1002/srin.201600024
    [12]
    R. Kennedy, R.M.F. Jones, R.M. Davis, M.G. Benz, and W.T. Carter, Superalloys made by conventional vacuum melting and a novel spray forming process, Vacuum, 47(1996), No. 6-8, p. 819. doi: 10.1016/0042-207X(96)00074-7
    [13]
    A. Choudhury, State of the art of superalloy production for aerospace and other application using VIM-VAR or VIM-ESR, ISIJ Int., 32(1992), No. 5, p. 563. doi: 10.2355/isijinternational.32.563
    [14]
    N. Nayan, Govind, C.N. Saikrishna, K.V. Ramaiah, S.K. Bhaumik, K.S. Nair, and M.C. Mittal, Vacuum induction melting of NiTi shape memory alloys in graphite crucible, Mater. Sci. Eng. A, 465(2007), No. 1-2, p. 44. doi: 10.1016/j.msea.2007.04.039
    [15]
    Z.H. Zhang, J. Frenzel, K. Neuking, and G. Eggeler, On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys, Acta Mater., 53(2005), No. 14, p. 3971. doi: 10.1016/j.actamat.2005.05.004
    [16]
    H.X. Ji, S. Jones, and P.M. Marquis, Characterization of the interaction between molten titanium alloy and Al2O3, J. Mater. Sci., 30(1995), No. 22, p. 5617. doi: 10.1007/BF00356694
    [17]
    M. Koyama, S. Arai, S. Suenaga, and M. Nakahashi, Interfacial reactions between titanium film and single crystal α-Al2O3, J. Mater. Sci., 28(1993), No. 3, p. 830. doi: 10.1007/BF01151265
    [18]
    A. Misra, Reaction of Ti and Ti–Al alloys with alumina, Metall. Trans. A, 22(1991), No. 3, p. 715. doi: 10.1007/BF02670294
    [19]
    Q.L. Li, H.R. Zhang, M. Gao, J.P. Li, T.X. Tao, and H. Zhang, Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 696. doi: 10.1007/s12613-018-1617-4
    [20]
    R.J. Cui, M. Gao, H. Zhang, and S.K. Gong, Interactions between TiAl alloys and yttria refractory material in casting process, J. Mater. Process. Technol., 210(2010), No. 9, p. 1190. doi: 10.1016/j.jmatprotec.2010.03.003
    [21]
    K.F. Lin and C.C. Lin, Interfacial reactions between Ti–6Al–4V alloy and zirconia mold during casting, J. Mater. Sci., 34(1999), No. 23, p. 5899. doi: 10.1023/A:1004791125373
    [22]
    T. Degawa and T. Ototani, Refining of high purity Ni-base superalloy using calcia refractory, Tetsu-to-Hagane, 73(1987), No. 14, p. 1691. doi: 10.2355/tetsutohagane1955.73.14_1691
    [23]
    J.P. Niu, X.F. Sun, T. Jin, K.N. Yang, H.R. Guan, and Z.Q. Hu, Investigation into deoxidation during vacuum induction melting refining of nickel base superalloy using CaO crucible, Mater. Sci. Technol., 19(2003), No. 4, p. 435. doi: 10.1179/026708303225010704
    [24]
    N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story, Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part I. Background, experimental techniques and analysis methods, Metall. Mater. Trans. B, 42(2011), No. 4, p. 711. doi: 10.1007/s11663-011-9516-3
    [25]
    C. Wang, N.T. Nuhfer, and S. Sridhar, Transient behavior of inclusion chemistry, shape, and structure in Fe–Al–Ti–O melts: Effect of titanium source and laboratory deoxidation simulation, Metall. Mater. Trans. B, 40(2009), No. 6, p. 1005. doi: 10.1007/s11663-009-9267-6
    [26]
    Y.J. Kwon, J. Choi, and S. Sridhar, The morphology and chemistry evolution of inclusions in Fe–Si–Al–O melts, Metall. Mater. Trans. B, 42(2011), No. 4, p. 814. doi: 10.1007/s11663-011-9523-4
    [27]
    W.L. Wang, L.W. Xue, T.S. Zhang, L.J. Zhou, J.Y. Chen, and Z.H. Pan, Thermodynamic corrosion behavior of Al2O3, ZrO2 hand MgO refractories in contact with high basicity slag, Ceram. Int., 45(2019), No. 16, p. 20664. doi: 10.1016/j.ceramint.2019.07.049
    [28]
    H.Y. Mu, T.S. Zhang, R. Fruehan, and B. Webler, Reduction of CaO and MgO slag components by Al in liquid Fe, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1665. doi: 10.1007/s11663-018-1294-8
    [29]
    Z.Y. Deng and M.Y. Zhu, Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process, ISIJ Int., 53(2013), No. 3, p. 450. doi: 10.2355/isijinternational.53.450
    [30]
    M. Jiang, X.H. Wang, and W.J. Wang, Control of non-metallic inclusions by slag-metal reactions for high strength alloying steels, Steel Res. Int., 81(2010), No. 9, p. 759. doi: 10.1002/srin.201000065
    [31]
    S.J. Luo, Y.H.F. Su, M.J. Lu, and J.C. Kuo, EBSD analysis of magnesium addition on inclusion formation in SS400 structural steel, Mater. Charact., 82(2013), p. 103. doi: 10.1016/j.matchar.2013.05.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(3005) PDF Downloads(139) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return