Li Meng, Jun-ming Liu, Ning Zhang, Hao Wang, Yu Han, Cheng-xu He, Fu-yao Yang,  and Xin Chen, Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1251-1258. https://doi.org/10.1007/s12613-020-2102-4
Cite this article as:
Li Meng, Jun-ming Liu, Ning Zhang, Hao Wang, Yu Han, Cheng-xu He, Fu-yao Yang,  and Xin Chen, Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1251-1258. https://doi.org/10.1007/s12613-020-2102-4
Research Article

Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel

+ Author Affiliations
  • Corresponding authors:

    Li Meng    E-mail: li_meng@126.com

    Ning Zhang    E-mail: zhangn@126.com

  • Received: 5 September 2019Revised: 18 May 2020Accepted: 18 May 2020Available online: 21 May 2020
  • A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel. The orientation and image quality data from electron backscatter diffraction measurements were used as input information for simulation. Three types of nucleation mechanisms, namely, random nucleation, high-stored-energy site nucleation (HSEN), and high-angle boundary nucleation (HABN), were considered for simulation. In particular, the nucleation and growth behaviors of Goss-oriented ({011}<100>) grains were investigated. Results showed that Goss grains had a nucleation advantage in HSEN and HABN. The amount of Goss grains was the highest according to HABN, and it matched the experimental measurement. However, Goss grains lacked a size advantage across all mechanisms during the recrystallization process.

  • loading
  • [1]
    S. Mishra, C. Därmann, and K. Lücke, On the development of the goss texture in iron-3% silicon, Acta Metall., 32(1984), No. 12, p. 2185. doi: 10.1016/0001-6160(84)90161-5
    [2]
    K.I. Arai and K. Ishiyama, Rolled texture and magnetic properties of 3% silicon steel, J. Appl. Phys., 64(1988), No. 10, p. 5352. doi: 10.1063/1.342369
    [3]
    T. Kubota, Recent progress on non-oriented silicon steel, Steel Res. Int., 76(2005), No. 6, p. 464. doi: 10.1002/srin.200506040
    [4]
    X.H. Gao, K.M. Qi, and C.L. Qiu, Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling, Mater. Sci. Eng. A, 430(2006), No. 1-2, p. 138. doi: 10.1016/j.msea.2006.05.058
    [5]
    H.Y. Song, H.T. Liu, Y.P. Wang, and G.D. Wang, Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method, J. Magn. Magn. Mater., 426(2017), p. 32. doi: 10.1016/j.jmmm.2016.11.038
    [6]
    D. Dorner, S. Zaefferer, and D. Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe−3% Si single crystal, Acta Mater., 55(2007), No. 7, p. 2519. doi: 10.1016/j.actamat.2006.11.048
    [7]
    J.T. Park and J.A. Szpunar, Evolution of recrystallization texture in nonoriented electrical steel, Acta Mater., 51(2003), No. 11, p. 3037. doi: 10.1016/S1359-6454(03)00115-0
    [8]
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, Netherlands, 2004.
    [9]
    D.J. Srolovitz, G.S. Grest, and M.P. Anderson, Computer simulation of recrystallization-I. Homogeneous nucleation and growth, Acta Metall., 34(1986), No. 9, p. 1833. doi: 10.1016/0001-6160(86)90128-8
    [10]
    Y. Liu, T. Baudin, and R. Penelle, Simulation of normal grain growth by cellular automata, Scripta Mater., 34(1996), No. 11, p. 1679. doi: 10.1016/1359-6462(96)00055-3
    [11]
    C.E. Krill Iii and L.Q. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., 50(2002), No. 12, p. 3059. doi: 10.1016/S1359-6454(02)00084-8
    [12]
    D. Raabe and R.C. Becker, Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium, Modell. Simul. Mater. Sci. Eng., 8(2000), No. 4, p. 445. doi: 10.1088/0965-0393/8/4/304
    [13]
    D.N. Fan and L.Q. Chen, Diffusion-controlled grain growth in two-phase solids, Acta Mater., 45(1997), No. 8, p. 3297. doi: 10.1016/S1359-6454(97)00022-0
    [14]
    D.Q. Xin, C.X. He, X.H. Gong, H. Wang, L. Meng, G. Ma, P.F. Hou, and W.K. Zhang, Monte Carlo study on abnormal growth of Goss grains in Fe–3%Si steel induced by second-phase particles, Inter. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1397. doi: 10.1007/s12613-016-1363-4
    [15]
    Y.B. Chun, S.L. Semiatin, and S.K. Hwang, Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium, Acta Mater., 54(2006), No. 14, p. 3673. doi: 10.1016/j.actamat.2006.03.055
    [16]
    D.E. Solas, C.N. Tomé, O. Engler, and H.R. Wenk, Deformation and recrystallization of hexagonal metals: Modeling and experimental results for zinc, Acta Mater., 49(2001), No. 18, p. 3791. doi: 10.1016/S1359-6454(01)00261-0
    [17]
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current issues in recrystallization: A review, Mater. Sci. Eng. A, 238(1997), No. 2, p. 219. doi: 10.1016/S0921-5093(97)00424-3
    [18]
    J.Y. Kang, B. Bacroix, H. Réglé, K.H. Oh, and H.C. Lee, Effect of deformation mode and grain orientation on misorientation development in a body-centered cubic steel, Acta Mater., 55(2007), No. 15, p. 4935. doi: 10.1016/j.actamat.2007.05.014
    [19]
    N. Rajmohan, Y. Hayakawa, J.A. Szpunar, and J.H. Root, Neutron diffraction method for stored energy measurement in interstitial free steel, Acta Mater., 45(1997), No. 6, p. 2485. doi: 10.1016/S1359-6454(96)00371-0
    [20]
    D.J. Srolovitz, G.S. Grest, M.P. Anderson, and A.D. Rollett, Computer simulation of recrystallization-II. Heterogeneous nucleation and growth, Acta Metall., 36(1988), No. 8, p. 2115. doi: 10.1016/0001-6160(88)90313-6
    [21]
    F.J. Humphreys, Nucleation in recrystallization, Mater. Sci. Forum, 467-470(2004), No. 1, p. 107.
    [22]
    W.T. Read and W. Shockley, Dislocation models of crystal grain boundary, Phys. Rev., 78(1950), No. 3, p. 275. doi: 10.1103/PhysRev.78.275
    [23]
    P.A. Beck and P.R. Sperry, Strain induced grain boundary migration in high purity aluminum, J. Appl. Phys., 21(1950), No. 2, p. 150. doi: 10.1063/1.1699614
    [24]
    F. Lin, A. Godfrey, M.A. Miodownik, and Q. Liu, Monte Carlo modeling of cube texture evolution in Ni-tapes during grain growth, Mater. Sci. Forum, 467-470(2004), p. 1075. doi: 10.4028/www.scientific.net/MSF.467-470.1075
    [25]
    A.D. Rollett, D.J. Srolovitz, R.D. Doherty, and M.P. Anderson, Computer simulation of recrystallization in non-uniformly deformed metals, Acta Metall., 37(1989), No. 2, p. 627. doi: 10.1016/0001-6160(89)90247-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Share Article

    Article Metrics

    Article Views(1752) PDF Downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return