Tai-qi Yin, Lang Chen, Yun Xue, Yang-hai Zheng, Xue-peng Wang, Yong-de Yan, Mi-lin Zhang, Gui-ling Wang, Fan Gao, and Min Qiu, Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl–KCl melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1657-1665. https://doi.org/10.1007/s12613-020-2112-2
Cite this article as:
Tai-qi Yin, Lang Chen, Yun Xue, Yang-hai Zheng, Xue-peng Wang, Yong-de Yan, Mi-lin Zhang, Gui-ling Wang, Fan Gao, and Min Qiu, Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl–KCl melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1657-1665. https://doi.org/10.1007/s12613-020-2112-2
Research Article

Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl–KCl melt

+ Author Affiliations
  • Corresponding authors:

    Yun Xue    E-mail: xueyun@hrbeu.edu.cn

    Yong-de Yan    E-mail: y5d2006@hrbeu.edu.cn

  • Received: 26 April 2020Revised: 30 May 2020Accepted: 1 June 2020Available online: 3 June 2020
  • Sm extraction from a LiCl–KCl melt was carried out by forming alloys on various electrodes, including Al, Ni, Cu, and liquid Zn, and the electrochemical behaviors of the resultant metal products were investigated using different electrochemical techniques. While Sm metal deposition via the conventional two-step reaction process was not noted on the inert electrode, underpotential deposition was observed on the reactive electrodes because of the latter’s depolarization effect. The depolarization effects of the reactive electrodes on Sm showed the order Zn > Al > Ni > Cu. Sm–M (M = Al, Ni, Cu, Zn) alloys were deposited by galvanostatic and potentiostatic electrolysis. The products were fully characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM)–energy dispersive spectrometry  (EDS), and the stability of the obtained M-rich compounds was determined. Finally, the relationship between the electrode potential and type of Sm–M intermetallic compounds formed was assessed on the basis of the observed electrochemical properties and electrodeposits.

  • loading
  • [1]
    P. Bagri and M.F. Simpson, Activity measurements of gadolinium(III) chloride in molten LiCl–KCl eutectic salt using saturated Gd/GdCl3 reference electrode, J. Electrochem. Soc., 164(2017), No. 8, p. H5299. doi: 10.1149/2.0441708jes
    [2]
    J.P. Ackerman, Chemical basis for pyrochemical reprocessing of nuclear fuel, Ind. Eng. Chem. Res., 30(1991), No. 1, p. 141. doi: 10.1021/ie00049a022
    [3]
    J. Zhang, Impurities in primary coolant salt of FHRs: Chemistry, impact, and removal methods, Energy Technol., 7(2019), No. 10, art. No. 1900016. doi: 10.1002/ente.201900016
    [4]
    Y.L. Liu, L.Y. Yuan, L.R. Zheng, L. Wang, B.L. Yao, Z.F. Chai, and W.Q. Shi, Confirmation and elimination of cyclic electrolysis of uranium ions in molten salts, Electrochem. Commun., 103(2019), p. 55. doi: 10.1016/j.elecom.2019.05.009
    [5]
    Y. Castrillejo, C. De La Fuente, M. Vega, F. de la Rosa, R. Pardo, and E. Barrado, Cathodic behaviour and oxoacidity reactions of samarium(III) in two molten chlorides with different acidity properties: The eutectic LiCl–KCl and the equimolar CaCl2–NaCl melt, Electrochim. Acta, 97(2013), p. 120. doi: 10.1016/j.electacta.2013.02.115
    [6]
    G. Cordoba and C. Caravaca, An electrochemical study of samarium ions in the molten eutectic LiCl + KCl, J. Electroanal. Chem., 572(2004), No. 1, p. 145. doi: 10.1016/j.jelechem.2004.05.029
    [7]
    M. Gibilaro, L. Massot, P. Chamelot, and P. Taxil, Co-reduction of aluminium and lanthanide ions in molten fluorides: Application to cerium and samarium extraction from nuclear wastes, Electrochim. Acta, 54(2009), No. 22, p. 5300. doi: 10.1016/j.electacta.2009.01.074
    [8]
    L. Massot, P. Chamelot, and P. Taxil, Cathodic behaviour of samarium(III) in LiF–CaF2 media on molybdenum and nickel electrodes, Electrochim. Acta, 50(2005), No. 28, p. 5510. doi: 10.1016/j.electacta.2005.03.046
    [9]
    O. Shirai, K. Uozumi, T. Iwai, and Y. Arai, Electrode reaction of the Np3+/Np couple at liquid Cd and Bi electrodes in LiCl–KCl eutectic melts, J. Appl. Electrochem., 34(2004), No. 3, p. 323. doi: 10.1023/B:JACH.0000015615.17281.51
    [10]
    M. Ustundag and R. Varol, Comparison of a commercial powder and a powder produced from Ti–6Al–4V chips and their effects on compacts sintered by the sinter-HIP method, Int. J. Miner. Metal. Mater., 26(2019), No. 7, p. 878. doi: 10.1007/s12613-019-1787-8
    [11]
    G.Y. Lin, X. Tan, D. Feng, J.L. Wang, and Y.X. Lei, Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al–13Si–7.5Cu–1Mg alloy, Int. J. Miner. Metal. Mater., 26(2019), No. 8, p. 1013. doi: 10.1007/s12613-019-1815-8
    [12]
    D. Wu, W.L. Wang, L.G. Zhang, Z.Y. Wang, K.C. Zhou, and L.B. Liu, New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metal. Mater., 26(2019), No. 9, p. 1151. doi: 10.1007/s12613-019-1854-1
    [13]
    Y. Cao, D.D. Zhang, P.J. Zhou, K. Liu, W.Y. Ming, and J. Ma, Reinforcing effect of laminate structure on the fracture toughness of Al3Ti intermetallic, Int. J. Miner. Metal. Mater., 27(2020), No. 5, p. 678. doi: 10.1007/s12613-019-1899-1
    [14]
    H.B. Sun, W. Wang, Z.J. Yu, Y. Yuan, S. Wang, and S.Q. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost, Chem. Commun., 51(2015), No. 59, p. 11892. doi: 10.1039/C5CC00542F
    [15]
    X.F. Zhang, S.Q. Jiao, J.G. Tu, W.L. Song, X. Xiao, S.J. Li, M.Y. Wang, H.P. Lei, D.H. Tian, H.S. Chen, and D.N. Fang, Rechargeable ultrahigh-capacity tellurium-aluminum batteries, Energy Environ. Sci., 12(2019), No. 6, p. 1918. doi: 10.1039/C9EE00862D
    [16]
    Y. Song, S.Q. Jiao, J.G. Tu, J.X. Wang, Y.J. Liu, H.D. Jiao, X.H. Mao, Z.C. Guo, and D.J. Fray, A long-life rechargeable Al ion battery based on molten salts, J. Mater. Chem. A, 5(2017), No. 3, p. 1282. doi: 10.1039/C6TA09829K
    [17]
    H.D. Jiao, C. Wang, J.G. Tu, D.H. Tian, and S.Q. Jiao, A rechargeable Al-ion battery: Al/molten AlCl3–urea/graphite, Chem. Commun., 53(2017), No. 15, p. 2331. doi: 10.1039/C6CC09825H
    [18]
    Y. Gao, Y.K. Shi, X.L. Liu, C. Huang, and B. Li, Cathodic behavior of samarium(III) and Sm–Al alloys preparation in fluorides melts, Electrochim. Acta, 190(2016), p. 208. doi: 10.1016/j.electacta.2015.12.117
    [19]
    M.L. Zhang, Y.D. Yan, W. Han, X. Li, Z.Y. Hou, Y. Tian, K. Ye, L.H. Bao, X.D. Li, and Z.J. Zhang, A new approach for the preparation of variable valence rare earth alloys from nano rare earth oxides at a low temperature in molten salt, RSC Adv., 2(2012), No. 4, p. 1585. doi: 10.1039/C1RA00285F
    [20]
    K. Liu, Y.L. Liu, L.Y. Yuan, H. He, Z.Y. Yang, X.L. Zhao, Z.F. Chai, and W.Q. Shi, Electroextraction of samarium from Sm2O3 in chloride melts, Electrochim. Acta, 129(2014), p. 401. doi: 10.1016/j.electacta.2014.02.136
    [21]
    Y. Castrillejo, P. Fernández, J. Medina, P. Hernández, and E. Barrado, Electrochemical extraction of samarium from molten chlorides in pyrochemical processes, Electrochim. Acta, 56(2011), No. 24, p. 8638. doi: 10.1016/j.electacta.2011.07.059
    [22]
    P. Chamelot, L. Massot, C. Hamel, C. Nourry, and P. Taxil, Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent, J. Nucl. Mater., 360(2007), No. 1, p. 64. doi: 10.1016/j.jnucmat.2006.08.015
    [23]
    Y.H. Liu, S. Zhang, W.H. Zhong, G.K. Cui, Y.C. Wang, Y. Dai, X.H. Cao, Y.Q. Wang, Z.B. Zhang, and Y.H. Liu, Electrochemical extraction of Sm(III) on active Ni electrode fabricated Sm–Ni alloys, J. Radioanal. Nucl. Chem., 322(2019), No. 2, p. 1003. doi: 10.1007/s10967-019-06775-4
    [24]
    P. Taxil, L. Massot, C. Nourry, M. Gibilaro, P. Chamelot, and L. Cassayre, Lanthanides extraction processes in molten fluoride media: Application to nuclear spent fuel reprocessing, J. Fluorine Chem., 130(2009), No. 1, p. 94. doi: 10.1016/j.jfluchem.2008.07.004
    [25]
    Y.L. Liu, L.Y. Yuan, K. Liu, G.A. Ye, M.L. Zhang, H. He, H.B. Tang, R.S. Lin, Z.F. Chai, and W.Q. Shi, Electrochemical extraction of samarium from LiCl–KCl melt by forming Sm–Zn alloys, Electrochim. Acta, 120(2014), p. 369. doi: 10.1016/j.electacta.2013.12.081
    [26]
    D.B. Ji, Y.D. Yan, M.L. Zhang, X. Li, X.Y. Jing, W. Han, Y. Xue, Z.J. Zhang, and T. Hartmann, Electrochemical preparation of Al–Sm intermetallic compound whisker in LiCl–KCl Eutectic Melts, Electrochim. Acta, 165(2015), p. 211. doi: 10.1016/j.electacta.2015.02.227
    [27]
    T. Iida, T. Nohira, and Y. Ito, Electrochemical formation of Sm–Ni alloy films in a molten LiCl–KCl–SmCl3 system, Electrochim. Acta, 46(2001), No. 16, p. 2537. doi: 10.1016/S0013-4686(01)00470-4
    [28]
    Y.H. Liu, Y.D. Yan, M.L. Zhang, J.N. Zheng, P. Wang, T.Q. Yin, Y. Xue, X.Y. Jing, and W. Han, Electrochemical synthesis of Sm–Ni alloy magnetic materials by Co-reduction of Sm(III) and Ni(II) in LiCl–KCl–SmCl3–NiCl2 melt, J. Electrochem. Soc., 163(2016), No. 13, p. D672. doi: 10.1149/2.0621613jes
    [29]
    Y.H. Liu, Y.D. Yan, M.L. Zhang, D.B. Ji, P. Li, T.Q. Yin, P. Wang, Y. Xue, X.Y Jing, W. Han, M. Qiu, and D.H. H, Electrochemical synthesis of Sm–Cu dendritic metal catalysts by Co-reduction of Sm(III) and Cu(II) in LiCl–KCl–SmCl3–CuCl2 melt, J. Alloys Compd., 772(2019), p. 978. doi: 10.1016/j.jallcom.2018.09.140
    [30]
    H.J. Zhao, H.W. Xie, X.B. Zhou, J.K. Qu, Z.Q. Zhao, Q.S. Song, Z.Q. Ning, P.F. Xing, and H.Y. Yin, Engineering the electrochemical reduction of carbon and silica in molten CaCl2: Manipulation of the electrolytic products, J. Electrochem. Soc., 166(2019), No. 4, p. E137. doi: 10.1149/2.0431904jes
    [31]
    S.L. Du, M.S. Zhou, and D.X. Tang, Depolarization of rare-earth metals on a liquid aluminum cathode in molten chlorides, Chin. J. Appl. Chem., 4(1987), No. 2, p. 65.
    [32]
    K. Liu, Y.L. Liu, Z.F. Chai, and W.Q. Shi, Evaluation of the electroextractions of Ce and Nd from LiCl–KCl molten salt using liquid Ga electrode, J. Electrochem. Soc., 164(2017), No. 4, p. D169. doi: 10.1149/2.0511704jes
    [33]
    Y.L. Liu, G.A. Ye, K. Liu, L.Y. Yuan, Z.F. Chai, and W. Shi, Electrochemical behavior of La (III) on the zinc-coated W electrode in LiCl–KCl eutectic, Electrochim. Acta, 168(2015), p. 206. doi: 10.1016/j.electacta.2015.03.219
    [34]
    D. Pletcher, R. Greff, R. Peat, L. Peter, and J. Robinson, Instrumental Methods in Electrochemistry, Woodhead Publishing Limited, Pennsylvania, 2001.
    [35]
    I. Barin and G.Platzki, Thermochemical Data of Pure Substances. 3rd ed, VCH Verlagsgesellschaft mbH, Weinheim, 1995.
    [36]
    T.V. Kulikova, A.V. Maiorova, V.A. Bykov, and K.Y. Shunyaev, Thermodynamic properties of melts based on the Al–Sm system, Russ. J. Phys. Chem. A, 86(2012), No. 8, p. 1185. doi: 10.1134/S0036024412080067
    [37]
    X.P. Su, W.J. Zhang, and Z.M. Du, A thermodynamic assessment of the Ni–Sm system, J. Alloys Compd., 278(1998), No. 1-2, p. 182. doi: 10.1016/S0925-8388(98)00560-X
    [38]
    W. Zhuang, Z.Y. Qiao, S. Wei, and J. Shen, Thermodynamic Evaluation of the Cu–R (R: Ce, Pr, Nd, Sm) Binary Systems, J. Phase Equilib., 17(1996), No. 6, p. 508. doi: 10.1007/BF02665998
    [39]
    H. Konishi, T. Nohira, and Y. Ito, Formation and phase control of Dy alloy films by electrochemical implantation and displantation, J. Electrochem. Soc., 148(2001), No. 7, p. C506. doi: 10.1149/1.1379031
    [40]
    B.R. Jia, L.G. Zhang, G.X. Huang, H.Y. Qi, H. Yang, L.B. Liu, Z.P. Jin, and F. Zheng, Thermodynamic assessment of the Sm–Zn binary system, J. Alloys Compd., 473(2009), No. 1-2, p. 176. doi: 10.1016/j.jallcom.2008.06.019
    [41]
    P. Chiotti and J.T Mason, Phase relations and thermodynamic properties for the samarium-zinc system, Trans. Met. Soc. AIME, 239(1967), No. 4, p. 547.
    [42]
    S.L. Li, Y.S. Che, J.X. Song, C.Y. Li, Y.C. Shu, J.L. He, and B. Yang, Electrochemical studies on the redox behavior of Zr(IV) in the LiCl–KCl eutectic molten salt and separation of Zr and Hf, J. Electrochem. Soc., 167(2020), No. 2, art. No. 023502. doi: 10.1149/1945-7111/ab69f3
    [43]
    Y. Castrillejo, P. Hernández, R. Fernández, and E. Barrado, Electrochemical behaviour of terbium in the eutectic LiCl–KCl in Cd liquid electrodes.- Evaluation of the thermochemical properties of the TbCdx intermetallic compounds, Electrochim. Acta, 147(2014), p. 743. doi: 10.1016/j.electacta.2014.10.005
    [44]
    T.Q. Yin, Y. Xue, Y.D. Yan, Y.H. Zheng, Y.L. Song, G.L. Wang, M.L. Zhang, M. Qiu, and D.H. Hu, Electrochemical synthesis and thermodynamic properties of Pr–Ni intermetallic compounds in a LiCl–KCl–NiCl2–PrCl3 Melt, ChemElectroChem, 6(2019), No. 3, p. 876. doi: 10.1002/celc.201801649
    [45]
    Y. Castrillejo, M. Bermejo, P.D. Arocas, A. Martínez, and E. Barrado, Electrochemical behaviour of praseodymium(III) in molten chlorides, J. Electroanal. Chem., 575(2005), No. 1, p. 61. doi: 10.1016/j.jelechem.2004.08.020
    [46]
    L.L. Jin, Y.B. Kang, P. Chartrand, and C.D. Fuerst, Thermodynamic evaluation and optimization of Al–La, Al–Ce, Al–Pr, Al–Nd and Al–Sm systems using the modified quasichemical model for liquids, Calphad, 35(2011), No. 1, p. 30. doi: 10.1016/j.calphad.2010.11.002
    [47]
    T.Q. Yin, Y. Liang, J.M. Qu, P. Li, R.F. An, Y. Xue, M.L. Zhang, W. Han, G.L. Wang, and Y.D. Yan, Thermodynamic and electrochemical properties of praseodymium and the formation of Ni–Pr intermetallics in LiCl–KCl melts, J. Electrochem. Soc., 164(2017), No. 13, p. D835. doi: 10.1149/2.0901713jes
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(3204) PDF Downloads(82) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return