Ping-ping Wang, Guo-qin Chen, Wen-jun Li, Hui Li, Bo-yu Ju, Murid Hussain, Wen-shu Yang, and Gao-hui Wu, Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1821-1827. https://doi.org/10.1007/s12613-020-2114-0
Cite this article as:
Ping-ping Wang, Guo-qin Chen, Wen-jun Li, Hui Li, Bo-yu Ju, Murid Hussain, Wen-shu Yang, and Gao-hui Wu, Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1821-1827. https://doi.org/10.1007/s12613-020-2114-0
Research ArticleCover Article

Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling

+ Author Affiliations
  • Corresponding authors:

    Guo-qin Chen    E-mail: chenguoqin@hit.edu.cn

    Wen-shu Yang    E-mail: yws001003@163.com

    Gao-hui Wu    E-mail: wugh@hit.edu.cn

  • Received: 19 April 2020Revised: 3 June 2020Accepted: 3 June 2020Available online: 10 June 2020
  • The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated. In the present work, the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored. Specifically, the thermal conductivity (λ) of the composites was measured and scanning electron microscopy of specific areas in the same samples was carried out to achieve quasi-in situ observations. The interface between the (100) plane of diamond and the Al matrix was well bonded with a zigzag morphology and abundant needle-like Al4C3 phases. By contrast, the interface between the (111) plane of diamond and the Al matrix showed weak bonding and debonded during thermal cycling. The debonding length increased rapidly over the first 100 thermal cycles and then increased slowly in the following 100 cycles. The λ of the diamond/Al composites decreased abruptly over the initial 20 cycles, increased afterward, and then decreased monotonously once more with increasing number of thermal cycles. Decreases in the λ of the Al matrix and the corresponding stress concentration at the diamond/Al interface caused by thermal mismatch, rather than interfacial debonding, may be the main factors influencing the decrease in λ of the diamond/Al composites, especially in the initial stages of thermal cycling.

  • loading
  • [1]
    Z.F. Che, J.W. Li, Q.X. Wang, L.H. Wang, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, and M.J. Kim, The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites, Compos. A: Appl. Sci. Manuf., 107(2018), p. 164. doi: 10.1016/j.compositesa.2018.01.002
    [2]
    J.P. Long, X. Li, D.D. Fang, P. Peng, and Q. He, Fabrication of diamond particles reinforced Al-matrix composites by hot-press sintering, Int. J. Refract. Met. Hard Mater., 41(2013), p. 85. doi: 10.1016/j.ijrmhm.2013.02.007
    [3]
    I.E. Monje, E. Louis, and J.M. Molina, Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption, Scr. Mater., 115(2016), p. 159. doi: 10.1016/j.scriptamat.2016.01.004
    [4]
    O. Beffort, F.A. Khalid, L. Weber, P. Ruch, U.E. Klotz, S. Meier, and S. Kleiner, Interface formation in infiltrated Al(Si)/diamond composites, Diam. Relat. Mater., 15(2006), No. 9, p. 1250. doi: 10.1016/j.diamond.2005.09.036
    [5]
    C.X. Li, X.T. Wang, L.H. Wang, J.W. Li, H.X. Li, and H.L. Zhang, Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere, Mater. Des., 92(2016), p. 643. doi: 10.1016/j.matdes.2015.12.098
    [6]
    Y. Zhang, J.W. Li, L.L. Zhao, and X.T. Wang, Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure, J. Mater. Sci., 50(2015), No. 2, p. 688. doi: 10.1007/s10853-014-8628-y
    [7]
    K. Chu, C.C. Jia, X.B. Liang, and H. Chen, Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 234. doi: 10.1007/s12613-010-0220-0
    [8]
    J. Shi, R.C. Che, C.Y. Liang, Y. Cui, S.B. Xu, and L. Zhang, Microstructure of diamond/aluminum composites fabricated by pressureless metal infiltration, Compos. B: Eng., 42(2011), No. 6, p. 1346. doi: 10.1016/j.compositesb.2011.06.006
    [9]
    I.E. Monje, E. Louis, and J.M. Molina, Aluminum/diamond composites: A preparative method to characterize reactivity and selectivity at the interface, Scr. Mater., 66(2012), No. 10, p. 798. doi: 10.1016/j.scriptamat.2012.02.012
    [10]
    Z.Q. Tan, Z.Q. Li, G.L. Fan, Q. Guo, X.Z. Kai, G. Ji, L.T. Zhang, and D. Zhang, Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer, Mater. Des., 47(2013), p. 160. doi: 10.1016/j.matdes.2012.11.061
    [11]
    G. Ji, Z.Q. Tan, Y.G. Lu, D. Schryvers, Z.Q. Li, and D Zhang, Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite, Mater. Charact., 112(2016), p. 129. doi: 10.1016/j.matchar.2015.12.013
    [12]
    Z.Q. Tan, G. Ji, A. Addad, Z.Q. Li, J.F. Silvain, and D. Zhang, Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing, Compos. A: Appl. Sci. Manuf., 91(2016), p. 9. doi: 10.1016/j.compositesa.2016.09.012
    [13]
    P.P. Wang, Z.Y. Xiu, L.T. Jiang, G.Q. Chen, X. Lin, and G.H. Wu, Enhanced thermal conductivity and flexural properties in squeeze casted diamond/aluminum composites by processing control, Mater. Des., 88(2015), p. 1347. doi: 10.1016/j.matdes.2015.09.048
    [14]
    N. Li, L.H. Wang, J.J. Dai, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles, Diamond Relat. Mater., 100(2019), art. No. 107565. doi: 10.1016/j.diamond.2019.107565
    [15]
    S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, and L.Y. Ma, Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372. doi: 10.1016/j.apsusc.2017.01.078
    [16]
    W.S. Yang, G.Q. Chen, P.P. Wang, J. Qiao, F.J. Hu, S.F. Liu, Q. Zhang, M. Hussain, R.H. Dong, and G.H. Wu, Enhanced thermal conductivity in Diamond/Aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method, J. Alloys Compd., 726(2017), p. 623. doi: 10.1016/j.jallcom.2017.08.055
    [17]
    G.Q. Chen, W.S. Yang, L. Xin, P.P. Wang, S.F. Liu, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 735(2018), p. 777. doi: 10.1016/j.jallcom.2017.11.183
    [18]
    I.E. Monje, E. Louis, and J.M. Molina, Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment, J. Mater. Sci., 51(2016), No. 17, p. 8027. doi: 10.1007/s10853-016-0072-8
    [19]
    W.L. Yang, K. Peng, J.J. Zhu, D.Y. Li, and L.P. Zhou, Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer, Diamond Relat. Mater., 46(2014), p. 35. doi: 10.1016/j.diamond.2014.04.007
    [20]
    L. Xin, X. Tian, W.S. Yang, G.Q. Chen, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 763(2018), p. 305. doi: 10.1016/j.jallcom.2018.05.310
    [21]
    M. Battabyal, O. Beffort, S. Kleiner, S. Vaucher, and L. Rohr, Heat transport across the metal–diamond interface, Diamond Relat. Mater., 17(2008), No. 7-10, p. 1438. doi: 10.1016/j.diamond.2008.01.023
    [22]
    L.T. Jiang, P.P. Wang, Z.Y. Xiu, G.Q. Chen, X. Lin, C. Dai, and G.H. Wu, Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method, Mater. Charact., 106(2015), p. 346. doi: 10.1016/j.matchar.2015.06.023
    [23]
    Z.F. Che, Y. Zhang, J.W. Li, H.L. Zhang, X.T. Wang, C. Sun, J.G. Wang, and M.J. Kim, Nucleation and growth mechanisms of interfacial Al4C3 in Al/diamond composites, J. Alloys Compd., 657(2016), p. 81. doi: 10.1016/j.jallcom.2015.10.075
    [24]
    T. Halicioglu, Calculation of surface energies for low index planes of diamond, Surf. Sci., 259(1991), No. 1-2, p. L714.
    [25]
    G. Chang, F.Y. Sun, J.L. Duan, Z.F. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Mater., 160(2018), p. 235. doi: 10.1016/j.actamat.2018.09.004
    [26]
    Z.Q. Tan, Z.Q. Li, G.L. Fan, X.Z. Kai, G. Ji, L.T. Zhang, and D. Zhang, Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties, Diamond Relat. Mater., 31(2013), p. 1. doi: 10.1016/j.diamond.2012.10.008
    [27]
    G. Chang, F. Y. Sun, L.H. Wang, Z.X. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications, ACS Appl. Mater. Interfaces, 11(2019), No. 29, p. 26507. doi: 10.1021/acsami.9b08106
    [28]
    M. Schöbel, H.P. Degischer, S. Vaucher, M. Hofmann, and P. Cloetens, Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum, Acta Mater., 58(2010), No. 19, p. 6421. doi: 10.1016/j.actamat.2010.08.004
    [29]
    G.Z. Bai, Y.J. Zhang, X.Y. Liu, J.J. Dai, X.T. Wang, and H.L. Zhang, High-temperature thermal conductivity and thermal cycling behavior of Cu–B/diamond composites, IEEE Trans. Compon. Packag. Manuf. Technol., 10(2020), No. 4, p. 626.
    [30]
    D.P.H. Hasselman and L.F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 21(1987), No. 6, p. 508. doi: 10.1177/002199838702100602
    [31]
    P. Kot, A. Baczmański, E. Gadalińska, S. Wroński, M. Wroński, M. Wróbel, G. Bokuchava, C. Scheffzük, and K. Wierzbanowski, Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models, J. Mater. Sci. Technol., 36(2020), p. 176. doi: 10.1016/j.jmst.2019.03.046
    [32]
    J.P. Liu, D.B. Xiong, Y.S. Su, Q. Guo, Z.Q. Li, and D. Zhang, Effect of thermal cycling on the mechanical properties of carbon nanotubes reinforced copper matrix nanolaminated composites, Mater. Sci. Eng. A, 739(2019), p. 132. doi: 10.1016/j.msea.2018.10.024
    [33]
    R. Zare, H. Sharifi, M.R. Saeri, and M. Tayebi, Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite, J. Alloys Compd., 801(2019), p. 520. doi: 10.1016/j.jallcom.2019.05.317
    [34]
    B.Y. Ju, W.S. Yang, P.Z. Shao, M. Hussain, Q. Zhang, Z.Y. Xiu, X.W. Hou, J. Qiao, and G.H. Wu, Effect of interfacial microstructure on the mechanical properties of GNPs/Al composites, Carbon, 162(2020), p. 346. doi: 10.1016/j.carbon.2020.02.069
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(3137) PDF Downloads(88) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return