Hong-yu Chen, Dong-dong Gu, Qing Ge, Xin-yu Shi, Hong-mei Zhang, Rui Wang, Han Zhang,  and Konrad Kosiba, Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 462-474. https://doi.org/10.1007/s12613-020-2133-x
Cite this article as:
Hong-yu Chen, Dong-dong Gu, Qing Ge, Xin-yu Shi, Hong-mei Zhang, Rui Wang, Han Zhang,  and Konrad Kosiba, Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 462-474. https://doi.org/10.1007/s12613-020-2133-x
Research Article

Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing

+ Author Affiliations
  • Corresponding author:

    Dong-dong Gu    E-mail: dongdonggu@nuaa.edu.cn

  • Received: 14 June 2020Revised: 29 June 2020Accepted: 2 July 2020Available online: 5 July 2020
  • Steel matrix composites (SMCs) reinforced with WC particles were fabricated via selective laser melting (SLM) by employing various laser scan strategies. A detailed relationship between the SLM strategies, defect formation, microstructural evolution, and mechanical properties of SMCs was established. The laser scan strategies can be manipulated to deliberately alter the thermal history of SMC during SLM processing. Particularly, the involved thermal cycling, which encompassed multiple layers, strongly affected the processing quality of SMCs. S-shaped scan sequence combined with interlayer offset and orthogonal stagger mode can effectively eliminate the metallurgical defects and retained austenite within the produced SMCs. However, due to large thermal stress, microcracks that were perpendicular to the building direction formed within the SMCs. By employing the checkerboard filling (CBF) hatching mode, the thermal stress arising during SLM can be significantly reduced, thus preventing the evolution of interlayer microcracks. The compressive properties of fabricated SMCs can be tailored at a high compressive strength (~3031.5 MPa) and fracture strain (~24.8%) by adopting the CBF hatching mode combined with the optimized scan sequence and stagger mode. This study demonstrates great feasibility in tuning the mechanical properties of SLM-fabricated SMCs without varying the set energy input, e.g., laser power and scanning speed.

  • loading
  • [1]
    B. AlMangour, D. Grzesiak, and J.M. Yang, Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites, J. Alloys Compd., 728(2017), p. 424. doi: 10.1016/j.jallcom.2017.08.022
    [2]
    H.Y. Chen, D.D. Gu, H.M. Zhang, L.X. Xi, T.W. Lu, L. Deng, U. Kühn, and K. Kosiba, Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: Underlying role of reinforcement weight fraction, J. Mater. Process. Technol., 289(2021), art. No. 116959. doi: 10.1016/j.jmatprotec.2020.116959
    [3]
    D.D. Gu, H.M. Zhang, D.H Dai, M.J. Xia, C. Hong, and R. Poprawe, Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance, Composites Part B, 163(2019), p. 585. doi: 10.1016/j.compositesb.2018.12.146
    [4]
    X.Q. Ni, D.C. Kong, Y. Wen, L. Zhang, W.H. Wu, B.B. He, L. Lu, and D.X. Zhu, Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 319. doi: 10.1007/s12613-019-1740-x
    [5]
    X.Q. Yang, Y. Liu, J.W. Ye, R.Q. Wang, T.C. Zhou, and B.Y. Mao, Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1396. doi: 10.1007/s12613-019-1837-2
    [6]
    L. Fan, H.Y. Chen, Y.H. Dong, L.H. Dong, and Y.S. Yin, Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 716. doi: 10.1007/s12613-018-1619-2
    [7]
    F.Y. Niu, D.J. Wu, G.Y. Ma, and B. Zhang, Additive manufacturing of ceramic structures by laser engineered net shaping, Chin. J. Mech. Eng., 28(2015), No. 6, p. 1117. doi: 10.3901/CJME.2015.0608.078
    [8]
    B. AlMangour, D. Grzesiak, T. Borkar, and J.M. Yang, Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting, Mater. Des., 138(2018), p. 119. doi: 10.1016/j.matdes.2017.10.039
    [9]
    B. AlMangour, D. Grzesiak, and J.M. Yang, Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content, Mater. Des., 104(2016), p. 141. doi: 10.1016/j.matdes.2016.05.018
    [10]
    N. Kang, W.Y. Ma, L. Heraud, M.E. Mansori, F.H. Li, M. Liu, and H.L. Liao, Selective laser melting of tungsten carbide reinforced maraging steel composite, Addit. Manuf., 22(2018), p. 104.
    [11]
    X.C Yan, C.Y. Chen, R.X. Zhao, W.Y. Ma, R. Bolot, J. Wang, Z.M. Ren, H.L. Liao, and M. Liu, Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance, Surf. Coat. Technol., 371(2019), p. 355. doi: 10.1016/j.surfcoat.2018.11.033
    [12]
    J.D. Wang, L.Q. Li, and W. Tao, Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition, Opt. Laser Technol., 82(2016), p. 170. doi: 10.1016/j.optlastec.2016.03.008
    [13]
    J.P. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective laser melting of iron-based powder, J. Mater. Process. Technol., 149(2004), No. 1-3, p. 616. doi: 10.1016/j.jmatprotec.2003.11.051
    [14]
    W.X. Zhang, Y.S. Shi, B. Liu, L. Xu, and W. Jiang, Consecutive sub-sector scan mode with adjustable scan lengths for selective laser melting technology, Int. J. Adv. Manuf. Technol., 41(2009), No. 7-8, art. No. 706. doi: 10.1007/s00170-008-1527-0
    [15]
    B. Qian, Y.S. Shi, Q.S. Wei, and H.B. Wang, The helix scan strategy applied to the selective laser melting, Int. J. Adv. Manuf. Technol., 63(2012), No. 5-8, p. 631. doi: 10.1007/s00170-012-3922-9
    [16]
    X.B. Su and Y.Q. Yang, Research on track overlapping during selective laser melting of powders, J. Mater. Process. Technol., 212(2012), No. 10, p. 2074. doi: 10.1016/j.jmatprotec.2012.05.012
    [17]
    K.G. Prashanth, S. Scudino, and J. Eckert, Defining the tensile properties of Al–12Si parts produced by selective laser melting, Acta Mater., 126(2017), p. 25. doi: 10.1016/j.actamat.2016.12.044
    [18]
    P. Mercelis and J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping J., 12(2006), No. 5, p. 254. doi: 10.1108/13552540610707013
    [19]
    S.A. Sillars, C.J. Sutcliffe, A.M. Philo, S.G.R. Brown, J. Sienz, and N.P. Lavery, The three-prong method: A novel assessment of residual stress in laser powder bed fusion, Virtual Phys. Prototyping, 13(2018), No. 1, p. 20. doi: 10.1080/17452759.2017.1392682
    [20]
    D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting, J. Laser Appl., 26(2014), No. 1, art. No. 012004. doi: 10.2351/1.4828755
    [21]
    Y. Liu, Y.Q. Yang, and D. Wang, A study on the residual stress during selective laser melting (SLM) of metallic powder, Int. J. Adv. Manuf. Technol., 87(2016), No. 1-4, p. 647. doi: 10.1007/s00170-016-8466-y
    [22]
    D.H. Dai and D.D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments, Mater. Des., 55(2014), p. 482. doi: 10.1016/j.matdes.2013.10.006
    [23]
    X.C. Wang, T. Laoui, J. Bonse, J.P. Kruth, B. Lauwers, and L. Froyen, Direct selective laser sintering of hard metal powders: Experimental study and simulation, Int. J. Adv. Manuf. Technol., 19(2002), No. 5, p. 351. doi: 10.1007/s001700200024
    [24]
    M. Badrossamay and T.H.C. Childs, Further studies in selective laser melting of stainless and tool steel powders, Int. J. Mach. Tools Manuf., 47(2007), No. 5, p. 779. doi: 10.1016/j.ijmachtools.2006.09.013
    [25]
    Y.H. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, and J.M. Schoenung, In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide–cobalt during laser deposition, Acta Mater., 57(2009), No. 18, p. 5419. doi: 10.1016/j.actamat.2009.07.038
    [26]
    B.J. Keene, Review of data for the surface tension of pure metals, Int. Mater. Rev., 38(1993), No. 4, p. 157. doi: 10.1179/imr.1993.38.4.157
    [27]
    A. Hussein, L. Hao, C.Z. Yan, and R. Everson, Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting, Mater. Des., 52(2013), p. 638. doi: 10.1016/j.matdes.2013.05.070
    [28]
    D.D. Gu and Y.F. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, J. Alloys Compd., 432(2007), No. 1-2, p. 163. doi: 10.1016/j.jallcom.2006.06.011
    [29]
    B. Cheng, S. Shrestha, and K. Chou, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manuf., 12(2016), p. 240.
    [30]
    D. Wang, C.H. Song, Y.Q. Yang, and Y.C. Bai, Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts, Mater. Des., 100(2016), p. 291. doi: 10.1016/j.matdes.2016.03.111
    [31]
    M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe, Residual stress within metallic model made by selective laser melting process, CIRP Ann., 53(2004), No. 1, p. 195. doi: 10.1016/S0007-8506(07)60677-5
    [32]
    N.K. Tolochko, M.K. Arshinov, A.V. Gusarov, V.I. Titov, T. Laoui, and L. Froyen, Mechanisms of selective laser sintering and heat transfer in Ti powder, Rapid Prototyping J., 9(2003), No. 5, p. 314. doi: 10.1108/13552540310502211
    [33]
    M.L. Zhong, H.Q. Sun, W.J. Liu, X.F. Zhu, and J.J. He, Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy, Scripta Mater., 53(2005), No. 2, p. 159. doi: 10.1016/j.scriptamat.2005.03.047
    [34]
    H.Y. Chen, D.D. Gu, D.H. Dai, M.J. Xia, and C.L. Ma, A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting, Mater. Lett., 227(2018), p. 128. doi: 10.1016/j.matlet.2018.05.042
    [35]
    H.Y. Chen, D.D. Gu, L. Deng, T.W. Lu, U. Kühn, and K. Kosiba, Laser additive manufactured high-performance Fe-based composites with unique strengthening structure, J. Mater. Sci. Technol., (2020). DOI: 10.1016/j.jmst.2020.04.011
    [36]
    Y.M. Wang, T. Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater., 17(2018), No. 1, p. 63. doi: 10.1038/nmat5021
    [37]
    J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall., 10(1962), No. 9, p. 789. doi: 10.1016/0001-6160(62)90092-5
    [38]
    A. Inoue, B.L. Shen, and C.T. Chang, Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system, Acta Mater., 52(2004), No. 14, p. 4093. doi: 10.1016/j.actamat.2004.05.022
    [39]
    T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, and D. Schwarze, Highly anisotropic steel processed by selective laser melting, Metall. Mater. Trans. B, 44(2013), No. 4, p. 794. doi: 10.1007/s11663-013-9875-z
    [40]
    J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, Simultaneous enhancements of strength and toughness in an Al–12Si alloy synthesized using selective laser melting, Acta Mater., 115(2016), p. 285. doi: 10.1016/j.actamat.2016.06.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(6514) PDF Downloads(131) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return