Jinglong Liang, Dongbin Wang, Le Wang, Hui Li, Weigang Cao, and Hongyan Yan, Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 473-478. https://doi.org/10.1007/s12613-020-2144-7
Cite this article as:
Jinglong Liang, Dongbin Wang, Le Wang, Hui Li, Weigang Cao, and Hongyan Yan, Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 473-478. https://doi.org/10.1007/s12613-020-2144-7
Research Article

Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts

+ Author Affiliations
  • Corresponding author:

    Hui Li    E-mail: lh@ncst.edu.cn

  • Received: 27 May 2020Revised: 9 July 2020Accepted: 14 July 2020Available online: 16 July 2020
  • A new method is proposed for the recovery of Mn via the direct electrochemical reduction of LiMn2O4 from the waste of lithium-ion batteries in NaCl−CaCl2 melts at 750°C. The results show that the LiMn2O4 reduction process by the electrochemical method on the coated electrode surface occurs in three steps: Mn(IV) → Mn(III) → Mn(II) → Mn. The products of this electro-deoxidation are CaMn2O4, MnO, (MnO)x(CaO)1−x, and Mn. Metal Mn appears when the electrolytic voltage increases to 2.6 V, which indicates that increasing the voltage may promote the deoxidation reaction process. With the advancement of the three-phase interline (3PI), electric deoxygenation gradually proceeds from the outer area of the crucible to the core. At high voltage, the kinetic process of the reduction reaction is accelerated, which generates double 3PIs at different stages.

  • loading
  • [1]
    P.Y. Guan, L. Zhou, Z.L. Yu, Y.D. Sun, Y.J. Liu, F.X. Wu, Y.F. Jiang, and D.W. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, J. Energy Chem., 43(2020), p. 220. doi: 10.1016/j.jechem.2019.08.022
    [2]
    Y.N. Xu, Y.Y. Dong, X. Han, X.F. Wang, Y.J. Wang, L.F. Jiao, and H.T. Yuan, Application for simply recovered LiCoO2 material as a high-performance candidate for supercapacitor in aqueous system, ACS Sustainable Chem. Eng., 3(2015), No. 10, p. 2435. doi: 10.1021/acssuschemeng.5b00455
    [3]
    G.L. Gao, X.M. Luo, X.Y. Lou, Y.G. Guo, R.J. Su, J. Guan, Y.S. Li, H. Yuan, J. Dai, and Z. Jiao, Efficient sulfuric acid-Vitamin C leaching system: Towards enhanced extraction of cobalt from spent lithium-ion batteries, J. Mater. Cycles Waste Manage., 21(2019), No. 4, p. 942. doi: 10.1007/s10163-019-00850-4
    [4]
    L. Li, Y.F. Bian, X.X. Zhang, Y. Yao, Q. Xue, E. Fan, F. Wu, and R.J Chen, A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries, Waste Manage., 85(2019), p. 437. doi: 10.1016/j.wasman.2019.01.012
    [5]
    M. Roshanfar, R. Golmohammadzadeh, and F. Rashchi. An environmentally friendly method for recovery of lithium and cobalt from spent lithium-ion batteries using gluconic and lactic acids, J. Environ. Chem. Eng, 7(2019), No. 1, art. No. 102794. doi: 10.1016/j.jece.2018.11.039
    [6]
    H. Setiawan, H. T. B. M. Petrus, and I. Perdan, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
    [7]
    X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, and H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step, Sep. Purif. Technol., 210(2019), p. 690. doi: 10.1016/j.seppur.2018.08.072
    [8]
    J.F. Xiao, J. Li, Z.Q. Xu, Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, J. Hazard. Mater., 338(2017), p. 124. doi: 10.1016/j.jhazmat.2017.05.024
    [9]
    W.Y. Wang, C.H. Yen, J.L. Lin, and R.B. Xu, Recovery of high-purity metallic cobalt from lithium nickel manganese cobalt oxide (NMC)-type Li-ion battery, J. Mater. Cycles Waste Manage., 21(2019), No. 2, p. 300. doi: 10.1007/s10163-018-0790-x
    [10]
    Q. Liang, H.F. Yue, S.F. Wang, S.Y. Yang, K. Lam, and X.H. Hou, Recycling and crystal regeneration of commercial used LiFePO4 cathode materials, Electrochim. Acta, 330(2020), art. No. 135323. doi: 10.1016/j.electacta.2019.135323
    [11]
    Y. Zhou, W. Shan, S.F. Wang, K. Lam, Q. Ru, F.M. Chen, and X.H. Hou, Recovery Li/Co from spent LiCoO2 electrode based on an aqueous dual-ion lithium-air battery, Electrochim. Acta, 332(2020), art. No. 135529. doi: 10.1016/j.electacta.2019.135529
    [12]
    G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361. doi: 10.1038/35030069
    [13]
    S.Q. Jiao and H.M. Zhu, Electrolysis of Ti2CO3 solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1-2, p. 243. doi: 10.1016/j.jallcom.2006.08.016
    [14]
    D.S. Maha Vishnu, N. Sanil, L. Shakila, R. Sudha, K.S. Mohandas, and K. Nagarajan, Electrochemical reduction of TiO2 powders in molten calcium chloride, Electrochim. Acta, 159(2015), p. 124. doi: 10.1016/j.electacta.2015.01.105
    [15]
    X.Y. Liu, M.L. Hu, C.G. Bai, and X.W. Lv, Effect of electrical conductivity and porosity of cathode on electro-deoxidation process of ilmenite concentrate, Rare Met. Mater. Eng., 46(2017), No. 5, p. 1176. doi: 10.1016/S1875-5372(17)30132-7
    [16]
    H.D. Jiao, Q.Y. Wang, J.B. Ge, H.B. Sun, and S.Q. Jiao, Electrochemical synthesis of Ti5Si3 in CaCl2 melt, J. Alloys Compd., 582(2014), p. 146. doi: 10.1016/j.jallcom.2013.08.050
    [17]
    X. Yang, L. Ji, X.L. Zou, T. Lim, J. Zhao, E.T. Yu, and A.J. Bard, Toward cost-effective manufacturing of silicon solar cells: electrodeposition of high-quality Si films in a CaCl2-based melts, Angew. Chem., 56(2017), No. 47, p. 15078. doi: 10.1002/anie.201707635
    [18]
    Y. Sakanaka, and T. Goto, Electrodeposition of Si film on Ag substrate in molten LiF–NaF–KF directly dissolving SiO2, Electrochim. Acta, 164(2015), p. 139. doi: 10.1016/j.electacta.2014.12.159
    [19]
    Y. Sakanaka, A. Murata, T. Goto, and K. Hachiya, Electrodeposition of porous Si film from SiO2 in molten BaCl2−CaCl2−NaCl, J. Alloys Compd., 695(2017), p. 2131. doi: 10.1016/j.jallcom.2016.11.056
    [20]
    W. Weng, M.Y. Wang, X.Z. Gong, Z. Wang, D. Wang, and Z.C. Guo, Electrochemical reduction behavior of soluble CaTiO3 in Na3AlF6−AlF3 melt for the preparation of metal titanium, J. Electrochem. Soc., 164(2017), No. 9, p. D551. doi: 10.1149/2.0611709jes
    [21]
    L. Kartal, M. B. Daryal, G. K. Şireli, and S. Timur. One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258. doi: 10.1007/s12613-019-1867-9
    [22]
    W. Weng, M.Y. Wang, X.Z. Gong, Z.Wang, D. Wang, and Z.C. Guo, Direct electro-deposition of metallic chromium from K2CrO4 in the equimolar CaCl2−KCl melts and its reduction mechanism, Electrochim. Acta, 212(2016), p. 162. doi: 10.1016/j.electacta.2016.06.142
    [23]
    L. Wang, W.Z. Liu, J.P. Hu, Q. Liu, H.R Yue, B. Liang, G.Q. Zhang, D.M. Luo, H.P. Xie, and C. Li, Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3, Chin. J. Chem. Eng., 26(2018), No. 3, p. 583. doi: 10.1016/j.cjche.2017.06.012
    [24]
    X.L. Ge, X.D. Wang, and S. Seetharaman, Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl, Electrochim. Acta, 54(2009), No. 18, p. 4397. doi: 10.1016/j.electacta.2009.03.015
    [25]
    L. Kartal and S. Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 992. doi: 10.1007/s12613-019-1821-x
    [26]
    B.L. Zhang, H.W. Xie, B.H. Lu, X. Chen, P.F. Xing, J.K. Qu, Q.S. Song, and H.Y. Yin, A green electrochemical process to recover Co and Li from spent LiCoO2-based batteries in meltss, ACS Sustainable Chem. Eng., 7(2019), No. 15, p. 13391. doi: 10.1021/acssuschemeng.9b02657
    [27]
    H. Li, D.B. Wang, J.L. Liang, H.Y. Yan, Z.Y. Cai, and R.G. Reddy, Electrochemical mechanism for the preparation of Fe−Si alloys by melts electrodeposition, Int. J. Chem. React. Eng., 18(2019), No. 2, art. No. 20190112.
    [28]
    J.L. Liang, H. Li, D.X. Huo, H.Y. Yan, R.G. Reddy, L.G. Wang, and L.Q. Wang, Electrochemical characteristics of TiO2 in NaCl−KCl−NaF melts system, Ionics, 24(2018), No. 10, p. 3221. doi: 10.1007/s11581-018-2503-9
    [29]
    H. Li, L.S. Zhang, J.L. Liang, R.G. Reddy, H.Y. Yan, and Y.H. Yin, Electrochemical Behavior of Fe3O4 in NaCl−CaCl2 Melts, Int. J. Chem. React. Eng., 17(2019), No. 10, art. No. 0190017.
    [30]
    G.Z. Chen and D.J. Fray, Understanding the electro-reduction of metal oxides in molten salts, [in] Light Metals Symposium, Charlotte, NC, 2004, p. 881.
    [31]
    W. Weng, M.Y. Wang, X.Z. Gong, and Z.C. Guo, Thermodynamic analysis on the direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis, Chin. J. Chem. Eng., 24(2016), No. 5, p. 671. doi: 10.1016/j.cjche.2016.01.006
    [32]
    D.Y. Tang, H.Y. Yin, W. Xiao, H. Zhu, X.H. Mao, and D.H. Wang, Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3–Na2CO3 using an inert anode, J. Electroanal. Chem., 689(2013), p. 109. doi: 10.1016/j.jelechem.2012.11.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(3207) PDF Downloads(62) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return