De-cheng Kong, Chao-fang Dong, Xiao-qing Ni, Liang Zhang, Rui-xue Li, Xing He, Cheng Man, and Xiao-gang Li, Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 266-278. https://doi.org/10.1007/s12613-020-2147-4
Cite this article as:
De-cheng Kong, Chao-fang Dong, Xiao-qing Ni, Liang Zhang, Rui-xue Li, Xing He, Cheng Man, and Xiao-gang Li, Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 266-278. https://doi.org/10.1007/s12613-020-2147-4
Research Article

Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders

+ Author Affiliations
  • Corresponding author:

    Chao-fang Dong    E-mail: cfdong@ustb.edu.cn

  • Received: 20 June 2020Revised: 21 July 2020Accepted: 21 July 2020Available online: 24 July 2020
  • Evaluating the recyclability of powders in additive manufacturing has been a long-term challenge. In this study, the microstructure and mechanical properties of a nickel-based superalloy fabricated by laser powder-bed fusion (LPBF) using recycled powders were investigated. Re-melted powder surfaces, satellite particles, and deformed powders were found in the recycled powders, combined with a high-oxygen-content surface layer. The increasing oxygen content led to the formation of high-density oxide inclusions; moreover, printing-induced cracks widely occurred and mainly formed along the grain boundaries in the as-built LPBF nickel-based superalloys fabricated using recycled powders. A little change in the Si or Mn content did not increase the hot cracking susceptibility (HCS) of the printed parts. The changing aspect ratio and the surface damage of the recycled powders might contribute to increasing the crack density. Moreover, the configuration of cracks in the as-built parts led to anisotropic mechanical properties, mainly resulting in extremely low ductility vertical to the building direction, and the cracks mainly propagated along the cellular boundary owing to the existence of a brittle precipitation phase.

  • loading
  • [1]
    E. MacDonald, and R. Wicker, Multiprocess 3D printing for increasing component functionality, Science, 353(2016), No. 6307, art. No. aaf2093. doi: 10.1126/science.aaf2093
    [2]
    M.A. Skylar-Scott, J. Mueller, C.W. Visser, and J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing, Nature, 575(2019), No. 7782, p. 330. doi: 10.1038/s41586-019-1736-8
    [3]
    D.Y. Zhang, S.J. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, and M. Easton, Metal Alloys for Fusion-Based Additive Manufacturing, Adv. Eng. Mater., 20(2018), No. 5, p. 1700952. doi: 10.1002/adem.201700952
    [4]
    A.I. Noskov, A.K. Gilmutdinov, and R.M. Yanbaev, Effect of coaxial laser cladding parameters on bead formation, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 550. doi: 10.1007/s12613-017-1436-z
    [5]
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, C. Man, G.L. Zhu, J.Z. Yao, L. Wang, X.Q. Cheng, and X.Q. Li, Effect of TiC content on the mechanical and corrosion properties of Inconel 718 alloy fabricated by a high-throughput dual-feed laser metal deposition system, J. Alloys Compd., 803(2019), p. 637. doi: 10.1016/j.jallcom.2019.06.317
    [6]
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, C. Man, J.Z. Yao, Y.C. Ji, Y.P. Ying, K. Xiao, X.Q. Cheng, and X.Q. Li, High-throughput fabrication of nickel-based alloys with different Nb contents via a dual-feed additive manufacturing system: Effect of Nb content on microstructural and mechanical properties, J. Alloys Compd., 785(2019), p. 826. doi: 10.1016/j.jallcom.2019.01.263
    [7]
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man, and X.G. Li, Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment, Corros. Sci., 166(2020), art. No. 108425. doi: 10.1016/j.corsci.2019.108425
    [8]
    D.L. Bourell, Perspectives on Additive Manufacturing, Ann. Rev. Mater. Res., 46(2016), No. 1, p. 1. doi: 10.1146/annurev-matsci-070115-031606
    [9]
    L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, F. Medina, and R.B. Wicker, Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science, J. Mater. Res. Technol., 1(2012), No. 1, p. 42. doi: 10.1016/S2238-7854(12)70009-1
    [10]
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man, and X.G. Li, The passivity of selective laser melted 316L stainless steel, Appl. Surf. Sci., 504(2020), art. No. 144495. doi: 10.1016/j.apsusc.2019.144495
    [11]
    S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.P. Kruth, and J. Schrooten, The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomater., 8(2012), No. 7, p. 2824. doi: 10.1016/j.actbio.2012.04.001
    [12]
    C. Haase, J. Bultmann, J. Hof, S. Ziegler, S. Bremen, C. Hinke, A. Schwedt, U. Prahl, and W. Bleck, Exploiting process-related advantages of selective laser melting for the production of high-manganese steel, Materials, 10(2017), No. 1, art. No. 56. doi: 10.3390/ma10010056
    [13]
    S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, U. Kühn, and J. Eckert, Processing metallic glasses by selective laser melting, Mater. Today, 16(2013), No. 1-2, p. 37. doi: 10.1016/j.mattod.2013.01.018
    [14]
    I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov, Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder, Appl. Surf. Sci., 254(2007), No. 4, p. 980. doi: 10.1016/j.apsusc.2007.08.046
    [15]
    D.C. Kong, X.Q. Ni, C.F. Dong, X.W. Lei, L. Zhang, C. Man, J.Z. Yao, X.Q. Cheng, and X.G. Li, Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting, Mater. Des., 152(2018), p. 88. doi: 10.1016/j.matdes.2018.04.058
    [16]
    X.Q. Ni, D.C. Kong, Y. Wen, L. Zhang, W.H. Wu, B.B. He, L. Lu, and D.X. Zhu, Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 319. doi: 10.1007/s12613-019-1740-x
    [17]
    J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, 3D printing of high-strength aluminium alloys, Nature, 549(2017), No. 7672, p. 365. doi: 10.1038/nature23894
    [18]
    Z.P. Zhou, L. Huang, Y.J. Shang, Y.P. Li, L. Jiang, and Q. Lei, Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing, Mater. Des., 160(2018), p. 1238. doi: 10.1016/j.matdes.2018.10.042
    [19]
    C. Man, C.F. Dong, T.T. Liu, D.C. Kong, D.K. Wang, and X.Q. Li, The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid, Appl. Surf. Sci., 467-468(2019), p. 193. doi: 10.1016/j.apsusc.2018.10.150
    [20]
    A.L. Maximenko and E.A. Olevsky, Pore filling during selective laser melting - assisted additive manufacturing of composites, Scripta Mater., 149(2018), p. 75. doi: 10.1016/j.scriptamat.2018.02.015
    [21]
    R. Laquai, B.R. Müller, G. Kasperovich, J. Haubrich, G. Requena, and G. Bruno, X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti−6Al−4V, Mater. Res. Lett., 6(2018), No. 2, p. 130. doi: 10.1080/21663831.2017.1409288
    [22]
    R.D. Li, J.H. Liu, Y.S. Shi, L. Wang, and W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, Int. J. Adv. Manuf. Technol., 59(2012), p. 1025. doi: 10.1007/s00170-011-3566-1
    [23]
    D.D. Gu, and Y.F. Shen, Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods, Mater. Des., 30(2009), No. 8, p. 2903. doi: 10.1016/j.matdes.2009.01.013
    [24]
    X. Zhou, X.H. Liu, D.D. Zhang, Z.J. Shen, and W. Liu, Balling phenomena in selective laser melted tungsten, J. Mater. Process Technol., 222(2015), p. 33. doi: 10.1016/j.jmatprotec.2015.02.032
    [25]
    T. Sanviemvongsak, D. Monceau, and B. Macquaire, High temperature oxidation of IN 718 manufactured by laser beam melting and electron beam melting: Effect of surface topography, Corros. Sci., 141(2018), p. 127. doi: 10.1016/j.corsci.2018.07.005
    [26]
    D.C. Kong, C.F. Dong, X.Q. Ni, and X.Q. Li, Corrosion of metallic materials fabricated by selective laser melting, npj Mater. Degrad., 3(2019), No. 1, p. 1. doi: 10.1038/s41529-018-0065-y
    [27]
    X.Q. Ni, D.C. Kong, W.H. Wu, L. Zhang, C.F. Dong, B.B. He, L. Lu, K.Q. Wu, and D.X. Zhu, Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds, J. Mater. Eng. Perform., 27(2018), No. 7, p. 3667. doi: 10.1007/s11665-018-3446-z
    [28]
    D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, C. Man, J.Z. Yao, K. Xiao, and X.G. Li, Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells, Electrochim. Acta, 276(2018), p. 293. doi: 10.1016/j.electacta.2018.04.188
    [29]
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, J.Z. Yao, C. Man, X.Q. Cheng, K. Xiao, and X.Q. Li, Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes, J. Mater. Sci. Technol., 35(2019), No. 7, p. 1499. doi: 10.1016/j.jmst.2019.03.003
    [30]
    S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti−6Al−4V and high-entropy alloys, Sci. Technol. Adv. Mater., 18(2017), No. 1, p. 584. doi: 10.1080/14686996.2017.1361305
    [31]
    C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Review of selective laser melting: Materials and applications, Appl. Phy. Rev., 2(2015), No. 4, art. No. 041101. doi: 10.1063/1.4935926
    [32]
    A.K.M. Basha, S.Srinivasan, and N. Srinivasan, Studies on thermally grown oxide as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 681. doi: 10.1007/s12613-017-1451-0
    [33]
    Y. Sun, M. Aindow, and R.J. Hebert, The effect of recycling on the oxygen distribution in Ti-6Al-4V powder for additive manufacturing, Mater. High Temp., 35(2018), No. 1-3, p. 217. doi: 10.1080/09603409.2017.1389133
    [34]
    A. Hadadzadeh, C. Baxter, B.S. Amirkhiz, and M. Mohammadi, Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between virgin and recycled powders, Addit. Manuf., 23(2018), p. 108.
    [35]
    H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, and J. Wang, Effect of powder reuse times on additive manufacturing of Ti−6Al−4V by selective electron beam melting, JOM, 67(2015), No. 3, p. 555. doi: 10.1007/s11837-015-1300-4
    [36]
    Q.B. Nguyen, M.L.S. Nai, Z.G. Zhu, C.N. Sun, J. Wei, and W. Zhou, Characteristics of inconel powders for powder-bed additive manufacturing, Engineering, 3(2017), No. 5, p. 695. doi: 10.1016/J.ENG.2017.05.012
    [37]
    P. Deng, M. Karadge, R.B. Rebak, V.K. Gupta, B.C. Prorok, and X.Y. Lou, The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion, Addit. Manuf., 35(2020), art. No. 101334.
    [38]
    B.K. Narayanan, M. Duraiselvam, S. Natarajan, and M. Anaz Khan, Laser material processing of nickel superalloy for improved erosion resistance, Mater. Manuf. Process, 32(2017), No. 14, p. 1596. doi: 10.1080/10426914.2017.1339312
    [39]
    Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493. doi: 10.1007/s12613-019-1756-2
    [40]
    C.L. Qiu, H.X. Chen, Q. Liu, S. Yue, and H.M. Wang, On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting, Mater. Charact., 148(2019), p. 330. doi: 10.1016/j.matchar.2018.12.032
    [41]
    F. Zhang, L.E. Levine, A.J. Allen, M.R. Stoudt, G. Lindwall, E.A. Lass, M.E. Williams, Y. Idell, and C.E. Campbell, Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion, Acta Mater., 152(2018), p. 200. doi: 10.1016/j.actamat.2018.03.017
    [42]
    N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach, Acta Mater., 94(2015), p. 59. doi: 10.1016/j.actamat.2015.04.035
    [43]
    Y. Chen, F.G. Lu, K. Zhang, P.L. Nie, S.R. Elmi Hosseini, K. Feng, and Z.G. Li, Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling, J. Alloys Compd., 670(2016), p. 312. doi: 10.1016/j.jallcom.2016.01.250
    [44]
    Q.Q. Han, Y.C. Gu, R. Setchi, F. Lacan, R. Johnston, S.L. Evans, and S.F. Yang, Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy, Addit. Manuf., 30(2019), art. No. 100919.
    [45]
    A.T. Sutton, C.S. Kriewall, S. Karnati, M.C. Leu, and J.W. Newkirk, Characterization of AISI 304L stainless steel powder recycled in the laser powder-bed fusion process, Addit. Manuf., 32(2020), art. No. 100981.
    [46]
    J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, and M.A. Peltz, Characterization of metal powders used for additive manufacturing, J. Res. Natl. Inst. Stand. Technol., 119(2014), p. 460. doi: 10.6028/jres.119.018
    [47]
    Y. Sun, R.J. Hebert, and M. Aindow, Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting, Mater. Des., 140(2018), p. 153. doi: 10.1016/j.matdes.2017.11.063
    [48]
    L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, J. Mater. Sci. Technol., 28(2012), No. 1, p. 1.
    [49]
    Y.M. Wang, T. Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater., 17(2017), No. 1, p. 63.
    [50]
    F.Y. Yan, W. Xiong, E. Faierson, and G.B. Olson, Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion, Scripta Mater., 155(2018), p. 104. doi: 10.1016/j.scriptamat.2018.06.011
    [51]
    T.R. Smith, J.D. Sugar, C. San Marchi, and J.M. Schoenung, Strengthening mechanisms in directed energy deposited austenitic stainless steel, Acta Mater., 164(2019), p. 728. doi: 10.1016/j.actamat.2018.11.021
    [52]
    D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, C. Man, J.Z. Yao, L. Wang, K. Xiao, and X.G. Li, Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting, Constr. Build. Mater., 221(2019), p. 720. doi: 10.1016/j.conbuildmat.2019.06.132
    [53]
    G. Wang, H. Ouyang, Q. Guo, Z.Q. Li, W.T. Yan, Z. Li, and C. Fan, The origin of high-density dislocations in additively manufactured metals, Mater. Res. Lett., 8(2020), No. 8, p. 283. doi: 10.1080/21663831.2020.1751739
    [54]
    L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, and Z.J. Shen, Dislocation network in additive manufactured steel breaks strength-ductility trade-off, Mater. Today, 21(2018), No. 4, p. 354. doi: 10.1016/j.mattod.2017.11.004
    [55]
    Z. Li, B. He, and Q. Guo, Strengthening and hardening mechanisms of additively manufactured stainless steels: The role of cell sizes, Scripta Mater., 177(2020), p. 17. doi: 10.1016/j.scriptamat.2019.10.005
    [56]
    Y. Chew, G.J. Bi, Z.G. Zhu, F.L. Ng, F. Weng, S.B. Liu, S.M.L. Nai, and B.Y. Lee, Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy, Mater. Sci. Eng. A, 744(2019), p. 137. doi: 10.1016/j.msea.2018.12.005
    [57]
    Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, and N. Hort, Hot tearing susceptibility of binary Mg–Y alloy castings, Mater. Des., 47(2013), p. 90. doi: 10.1016/j.matdes.2012.12.044
    [58]
    M.A. Easton, M.A. Gibson, S. Zhu, and T.B. Abbott, An a priori hot-tearing indicator applied to die-cast magnesium–rare earth alloys, Metall. Mater. Trans. A, 45(2014), No. 8, p. 3586. doi: 10.1007/s11661-014-2272-7
    [59]
    Z.Q. Wei, Y. Wang, and Z. Liu, Effects of Zn and Y on hot-tearing susceptibility of Mg–xZn–2xY alloys, Mater. Sci. Technol., 34(2018), No. 16, p. 2001. doi: 10.1080/02670836.2018.1507696
    [60]
    D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, and X.H. Wu, Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting, Mater. Sci. Eng. A, 667(2016), p. 42. doi: 10.1016/j.msea.2016.04.086
    [61]
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, C. Man, and X.G. Li, Hetero-deformation induced stress in additively manufactured 316L stainless steel, Mater. Res. Lett., 8(2020), No. 10, p. 390. doi: 10.1080/21663831.2020.1775149
    [62]
    D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, C. Man, X.Q. Cheng, and X.G. Li, Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting, Mater. Lett., 235(2019), p. 1. doi: 10.1016/j.matlet.2018.09.152
    [63]
    Q.Q. Han, Y.C. Gu, S. Soe, F. Lacan, and R. Setchi, Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing, Opt. Laser Technol., 124(2020), art. No. 105984. doi: 10.1016/j.optlastec.2019.105984
    [64]
    X.Y. Wang, K. Kurosawa, M. Huang, X.K. Lu, D. Zhang, H. Kokawa, Y.B. Yan, and S. Yang, Control of precipitation behaviour of Hastelloy-X through grain boundary engineering, Mater. Sci. Technol., 33(2017), No. 17, p. 2078. doi: 10.1080/02670836.2017.1345823
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(8661) PDF Downloads(202) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return