Tingye Qi, Haochen Wang, Guorui Feng, Yujiang Zhang, Jinwen Bai, and Yanna Han, Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1161-1169. https://doi.org/10.1007/s12613-020-2148-3
Cite this article as:
Tingye Qi, Haochen Wang, Guorui Feng, Yujiang Zhang, Jinwen Bai, and Yanna Han, Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1161-1169. https://doi.org/10.1007/s12613-020-2148-3
Research Article

Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution

+ Author Affiliations
  • Corresponding author:

    Guorui Feng    E-mail: fgr09000@126.com

  • Received: 18 May 2020Revised: 20 July 2020Accepted: 21 July 2020Available online: 24 July 2020
  • The effect of calcination temperature on the pozzolanic activity of maize straw stem ash (MSSA) was evaluated. The MSSA samples calcined at temperature values of 500, 700, and 850°C were dissolved in portlandite solution for 6 h, thereby obtaining residual samples. The MSSA and MSSA residual samples were analyzed using Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy to determine vibration bonds, minerals, microstructures, and Si 2p transformation behavior. The conductivity, pH value, and loss of conductivity with dissolving time of the MSSA-portlandite mixed solution were also determined. The main oxide composition of MSSA was silica and potassium oxide. The dissolution of the Si4+ content of MSSA at 500°C was higher than those of the other calcination temperatures. The conductivity and loss of conductivity of MSSA at 700°C were higher than those of the other calcination temperatures at a particular dissolving time due to the higher KCl content in MSSA at 700°C. C–S–H was easily identified in MSSA samples using X-ray powder diffraction, and small cubic and nearly spherical particles of C–S–H were found in the MSSA residual samples. In conclusion, the optimum calcination temperature of MSSA having the best pozzolanic activity is 500°C, but excessive agglomeration must be prevented.
  • loading
  • [1]
    S.V. Vassilev, D. Baxter, L.K. Andersen, and C.G. Vassileva, An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification, Fuel, 105(2013), p. 40. doi: 10.1016/j.fuel.2012.09.041
    [2]
    Z. Zhang, Z.N. Han, and C.D. Sheng, Feasibility evaluation of biomass fly ashes from power station using as fertilizer, Trans. Chin. Soc. Agric. Eng., 32(2016), No. 7, p. 200.
    [3]
    M. Frías, H. Savastano, E. Villar, M.I.S.d. Rojas, and S. Santos, Characterization and properties of blended cement matrices containing activated bamboo leaf wastes, Cem. Concr. Compos., 34(2012), No. 9, p. 1019. doi: 10.1016/j.cemconcomp.2012.05.005
    [4]
    E.V. Morales, E. Villar-Cociña, M. Frías, S.F. Santos, and H. Savastano Jr., Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation, Cem. Concr. Compos., 31(2009), No. 1, p. 22. doi: 10.1016/j.cemconcomp.2008.10.004
    [5]
    J.F. Shen, X.Z. Liu, S.G. Zhu, H.L. Zhang, and J.J. Tan, Effects of calcination parameters on the silica phase of original and leached rice husk ash, Mater. Lett., 65(2011), No. 8, p. 1179. doi: 10.1016/j.matlet.2011.01.034
    [6]
    L.W.O. Soares, R.M. Braga, J.C.O. Freitas, R.A. Ventura, D.S.S. Pereira, and D.M.A. Melo, The effect of rice husk ash as pozzolan in addition to cement Portland class G for oil well cementing, J. Pet. Sci. Eng., 131(2015), p. 80. doi: 10.1016/j.petrol.2015.04.009
    [7]
    G.C. Cordeiro, R.D.T. Filho, and E.M.R. Fairbairn, Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash, Constr. Build. Mater., 23(2009), No. 10, p. 3301. doi: 10.1016/j.conbuildmat.2009.02.013
    [8]
    M. Jamil, A.B.M.A. Kaish, S.N. Raman, and M.F.M. Zain, Pozzolanic contribution of rice husk ash in cementitious system, Constr. Build. Mater., 47(2013), p. 588. doi: 10.1016/j.conbuildmat.2013.05.088
    [9]
    E.V. Cociña, H. Savastano, L. Rodier, M. Lefran, and M. Frías, Pozzolanic characterization of Cuban bamboo leaf ash: Calcining temperature and kinetic parameters, Waste Biomass Valorization, 9(2018), No. 4, p. 691. doi: 10.1007/s12649-016-9741-8
    [10]
    W.T. Xu, T.Y. Lo, and S.A. Memon, Microstructure and reactivity of rich husk ash, Constr. Build. Mater., 29(2012), p. 541. doi: 10.1016/j.conbuildmat.2011.11.005
    [11]
    G.C. Cordeiro and C.P. Sales, Influence of calcining temperature on the pozzolanic characteristics of elephant grass ash, Cem. Concr. Compos., 73(2016), p. 98. doi: 10.1016/j.cemconcomp.2016.07.008
    [12]
    S. Munshi and R.P. Sharma, Experimental investigation on strength and water permeability of mortar incorporate with rice straw ash, Adv. Mater. Sci. Eng., 2016(2016), p. 1. doi: https://doi.org/10.1155/2016/9696505
    [13]
    S. Munshi and R.P. Sharma, Investigation on the pozzolanic properties of rice straw ash prepared at different temperatures, Mater. Express, 8(2018), No. 2, p. 157. doi: 10.1166/mex.2018.1416
    [14]
    J. Roselló, L. Soriano, M.P. Santamarina, J.L. Akasaki, J. Monzó, and J. Payá, Rice straw ash: A potential pozzolanic supplementary material for cementing systems, Ind. Crops Prod., 103(2017), p. 39. doi: 10.1016/j.indcrop.2017.03.030
    [15]
    M.P. Luxán, F. Madruga, and J. Saavedra, Rapid evaluation of pozzolanic activity of natural products by conductivity measurement, Cem. Concr. Res., 19(1989), No. 1, p. 63. doi: https://doi.org/10.1016/0008-8846(89)90066-5
    [16]
    Q.J. Yu, K. Sawayama, S. Sugita, M. Shoya, and Y. Isojima, The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product, Cem. Concr. Res., 29(1999), No. 1, p. 37. doi: 10.1016/S0008-8846(98)00172-0
    [17]
    V.T.A. Van, C. Rößler, D.D. Bui, and H.M. Ludwig, Pozzolanic reactivity of mesoporous amorphous rice husk ash in portlandite solution, Constr. Build. Mater., 59(2014), p. 111. doi: 10.1016/j.conbuildmat.2014.02.046
    [18]
    J.C.B. Moraes, J.L.P. Melges, J.L. Akasaki, M.M. Tashima, L. Soriano, J. Monzó, M.V. Borrachero, and J. Payá, Pozzolanic reactivity studies on a biomass-derived waste from sugar cane production: Sugar cane straw ash (SCSA), ACS Sustainable Chem. Eng., 4(2016), No. 8, p. 4273. doi: 10.1021/acssuschemeng.6b00770
    [19]
    S. Wansom, S. Janjaturaphan, and S. Sinthupinyo, Characterizing pozzolanic activity of rice husk ash by impedance spectroscopy, Cem. Concr. Res., 40(2010), No. 12, p. 1714. doi: 10.1016/j.cemconres.2010.08.013
    [20]
    S.J. Xiong, M. Öhman, Y.F. Zhang, and T. Lestander, Corn stalk ash composition and its melting (slagging) behavior during combustion, Energy Fuels, 24(2010), No. 9, p. 4866. doi: 10.1021/ef1005995
    [21]
    G.R. Feng, T.Y. Qi, G. Xu, D.S. Zhang, Z.H. Wang, and Z. Li, Physical chemical characterization of thermally and aqueous solution treated maize stalk stem ash and its potential use in a cementing system, Energy Sources A: Recovery Util. Environ. Eff., 42(2020), No. 8, p. 930. doi: https://doi.org/10.1080/15567036.2019.1602206
    [22]
    D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
    [23]
    Y. Feng, Q.S. Chen, Y.L. Zhou, Q.X. Yang, Q.L. Zhang, L. Jiang, and H.Q. Guo, Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity, Constr. Build. Mater., 240(2020), art. No. 117970. doi: 10.1016/j.conbuildmat.2019.117970
    [24]
    Y. Wang, Y.T. Hu, X. Zhao, S.Q. Wang, and G.X. Xing, Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times, Energy Fuels, 27(2013), No. 10, p. 5890. doi: 10.1021/ef400972z
    [25]
    V.D. Katare and M.V. Madurwar, Experimental characterization of sugarcane biomass ash—A review, Constr. Build. Mater., 152(2017), p. 1. doi: 10.1016/j.conbuildmat.2017.06.142
    [26]
    D. Boström, N. Skoglund, A. Grimm, C. Boman, M. Öhman, M. Broström, and R. Backman, Ash transformation chemistry during combustion of biomass, Energy Fuels, 26(2012), No. 1, p. 85. doi: 10.1021/ef201205b
    [27]
    J.N. Knudsen, P.A. Jensen, and K. Dam-Johansen, Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass, Energy Fuels, 18(2004), No. 5, p. 1385. doi: 10.1021/ef049944q
    [28]
    C.L. He, B. Osbaeck, and E. Makovicky, Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects, Cem. Concr. Res., 25(1995), No. 8, p. 1691. doi: 10.1016/0008-8846(95)00165-4
    [29]
    J. Payá, M.V. Borrachero, J. Monzó, E. Peris-Mora, and F. Amahjour, Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity, Cem. Concr. Res., 31(2001), No. 1, p. 41. doi: https://doi.org/10.1016/S0008-8846(00)00434-8
    [30]
    C.J. Shi and R.L. Day, Acceleration of the reactivity of fly ash by chemical activation, Cem. Concr. Res., 25(1995), No. 1, p. 15. doi: 10.1016/0008-8846(94)00107-A
    [31]
    L. Yang, Z.N. Zhu, D.L. Li, X.K. Yan, and H.J. Zhang, Effects of particle size on the flotation behavior of coal fly ash, Waste Manag., 85(2019), p. 490. doi: 10.1016/j.wasman.2019.01.017
    [32]
    D.Q. Wang, Q. Wang, and Z.X. Huang, Investigation on the poor fluidity of electrically conductive cement–graphite paste: Experiment and simulation, Mater. Des., 169(2019), art. No. 107679. doi: 10.1016/j.matdes.2019.107679
    [33]
    A. Zdziennicka and B. Jańczuk, Effect of anionic surfactant and short-chain alcohol mixtures on adsorption at quartz/water and water/air interfaces and the wettability of quartz, J. Colloid Interface Sci., 354(2011), No. 1, p. 396. doi: 10.1016/j.jcis.2010.09.063
    [34]
    N. Rahmat, A. Sabali, A.V. Sandu, N. Sahiron, and G.I. Sandu, Study of calcination temperature and concentration of NaOH effect on crystallinity of silica from sugarcane bagasse ash (SCBA), Rev. Chim. (Bucharest), 67(2016), No. 9, p. 1872.
    [35]
    M.E. Simonsen, C. Sønderby, and E.G. Søgaard, Synthesis and characterization of silicate polymers, J. Sol-Gel Sci. Technol., 50(2009), No. 3, p. 372. doi: 10.1007/s10971-009-1907-4
    [36]
    P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, and X.D. Cong, Structure of calcium silicate hydrate (C–S–H): Near-, mid-, and far-infrared spectroscopy, J. Am. Ceram. Soc., 82(1999), No. 3, p. 742. doi: https://doi.org/10.1111/j.1151-2916.1999.tb01826.x
    [37]
    C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D.T. Bowron, and L. Börjesson, Structure of mixed alkali/alkaline-earth silicate glasses from neutron diffraction and vibrational spectroscopy, Phys. Rev. B, 72(2005), No. 6, art. No. 064206. doi: 10.1103/PhysRevB.72.064206
    [38]
    C.A. Rees, J.L. Provis, G.C. Lukey, and J.S.J. van Deventer, Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging, Langmuir, 23(2007), No. 15, p. 8170. doi: 10.1021/la700713g
    [39]
    V.L. Zholobenko, S.M. Holmes, C.S. Cundy, and J. Dwyer, Synthesis of MCM-41 materials: An in situ FTIR study, Microporous Mater., 11(1997), No. 1-2, p. 83. doi: 10.1016/S0927-6513(97)00033-3
    [40]
    N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, and J. Sipusic, Dehydration of a layered double hydroxide—C2AH8, Thermochim. Acta, 464(2007), No. 1-2, p. 7. doi: 10.1016/j.tca.2007.07.022
    [41]
    J. Partyka and M. Leśniak, Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2–Al2O3–Na2O–K2O–CaO system modified by variable molar ratio of SiO2/Al2O3, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 152(2016), p. 82. doi: 10.1016/j.saa.2015.07.045
    [42]
    M.E. Simonsen, C. Sønderby, Z.S. Li, and E.G. Søgaard, XPS and FT-IR investigation of silicate polymers, J. Mater. Sci., 44(2009), No. 8, p. 2079. doi: 10.1007/s10853-009-3270-9
    [43]
    T. Hiemstra and W.H. van Riemsdijk, Multiple activated complex dissolution of metal (hydr) oxides: A thermodynamic approach applied to quartz, J. Colloid Interface Sci., 136(1990), No. 1, p. 132. doi: 10.1016/0021-9797(90)90084-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(3065) PDF Downloads(65) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return