Chun-duo Dai, Yu Fu, Jia-xiang Guo, and Cui-wei Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1388-1397. https://doi.org/10.1007/s12613-020-2149-2
Cite this article as:
Chun-duo Dai, Yu Fu, Jia-xiang Guo, and Cui-wei Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1388-1397. https://doi.org/10.1007/s12613-020-2149-2
Research Article

Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering

+ Author Affiliations
  • Corresponding author:

    Cui-wei Du    E-mail: dcw@ustb.edu.cn

  • Received: 6 May 2020Revised: 20 July 2020Accepted: 21 July 2020Available online: 24 July 2020
  • The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and electrochemical tests. The FeCoCrNiMo0.3 coating was mainly composed of the face-centered cubic phase. High substrate temperature promoted the densification of the coating, and the pitting resistance and protective ability of the coating in 3.5wt% NaCl solution was thus improved. When the deposition time was prolonged at 500°C, the thickness of the coating remarkably increased. Meanwhile, the pitting resistance improved as the deposition time increased from 1 to 3 h; however, further improvement could not be obtained for the coating sputtered for 5 h. Overall, the pitting resistance of the FeCoCrNiMo0.3 coating sputtered at 500°C for 3 h exceeds those of most of the reported high-entropy alloy coatings.

  • loading
  • [1]
    B. Ren, S.J. Lv, R.F. Zhao, Z.X. Liu, and S.K. Guan, Effect of sputtering parameters on (AlCrMnMoNiZr)N films, Surf. Eng., 30(2014), No. 2, p. 152. doi: 10.1179/1743294413Y.0000000226
    [2]
    H. Luo, S.J. Gao, C.F. Dong, and X.G. Li, Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution, Electrochim. Acta, 135(2014), p. 412. doi: 10.1016/j.electacta.2014.04.128
    [3]
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4, Corros. Sci., 50(2008), p. 780. doi: 10.1016/j.corsci.2007.11.004
    [4]
    C.O.A. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093. doi: 10.1016/S0013-4686(02)00841-1
    [5]
    M. Lelis, S. Tuckute, S. Varnagiris, M. Urbonavicius, G. Laukaitis, and K. Bockute, Tailoring of TiO2 film microstructure by pulsed-DC and RF magnetron co-sputtering, Surf. Coat. Technol., 377(2019), art. No. 124906. doi: 10.1016/j.surfcoat.2019.124906
    [6]
    Z. He, S. Zhang, and D. Sun, Effect of bias on structure mechanical properties and corrosion resistance of TiNx films prepared by ion source assisted magnetron sputtering, Thin Solid Films, 676(2019), p. 60. doi: 10.1016/j.tsf.2019.02.037
    [7]
    G. Greczynski, J. Lu, J. Jensen, S. Bolz, W. Kölker, C.H. Schiffers, O. Lemmer, J.E. Greene, and L. Hultman, A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering, Surf. Coat. Technol., 257(2014), p. 15. doi: 10.1016/j.surfcoat.2014.01.055
    [8]
    J.F. Yang, Z.G. Yuan, Q. Liu, X.P. Wang, and Q.F. Fang, Characterization of Mo−Al−N nanocrystalline films synthesized by reactive magnetron sputtering, Mater. Res. Bull., 44(2009), No. 1, p. 86. doi: 10.1016/j.materresbull.2008.03.029
    [9]
    U. Jansson and E. Lewin, Sputter deposition of transition-metal carbide films — A critical review from a chemical perspective, Thin Solid Films, 536(2013), p. 1. doi: 10.1016/j.tsf.2013.02.019
    [10]
    T.Y. Zhang, J.S. Wu, L. Jin, Z. Zhang, W. Rong, B.W. Zhang, Y. Wang, Y.D. He, W. Liu, and X.G. Li, Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2630. doi: 10.1016/j.jmst.2019.07.031
    [11]
    P.J. Kelly and R.D. Arnell, Magnetron sputtering: A review of recent developments and applications, Vacuum, 56(2000), No. 3, p. 159. doi: 10.1016/S0042-207X(99)00189-X
    [12]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [13]
    Y. Zhang, X. Yang, and P.K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM, 64(2012), No. 7, p. 830. doi: 10.1007/s11837-012-0366-5
    [14]
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
    [15]
    D.Y. Li, C.X. Li, T. Feng, Y.D. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, and Y. Zhang, High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater., 123(2017), p. 285. doi: 10.1016/j.actamat.2016.10.038
    [16]
    C.D. Gómez-Esparza, R. Peréz-Bustamante, J.M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J.M. Olivares-Ramírez, and A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 634. doi: 10.1007/s12613-019-1771-3
    [17]
    Q.D. Qin, J.B. Qu, Y.J. Hu, Y. Wu, and X. Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi–TiO high-entropy alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1286. doi: 10.1007/s12613-018-1681-9
    [18]
    C.B. Wei, X.H. Du, Y.P. Lu, H. Jiang, T.J. Li, and T.M. Wang, Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1312. doi: 10.1007/s12613-020-2042-z
    [19]
    X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys., 210(2018), p. 12. doi: 10.1016/j.matchemphys.2017.07.078
    [20]
    H. Can, C.W. Du, C.D. Dai, M. Zheng, Z.Y. Liu, and X.G. Li, Research progress of high-entropy alloy coatings, Surf. Coat., 11(2019), p. 15.
    [21]
    Y. Zhang, T. Han, M. Xiao, and Y. Shen, Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating, Int. J. Miner. Metall. Mater., 27(2020), p. 630. doi: 10.1007/s12613-019-1958-7
    [22]
    W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh, and K. Shimoda, On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating, Surf. Coat. Technol., 316(2017), p. 71. doi: 10.1016/j.surfcoat.2017.02.073
    [23]
    G. Jin, Z.B. Cai, Y.J. Guan, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and D. Zhang, High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating, Appl. Surf. Sci., 445(2018), p. 113. doi: 10.1016/j.apsusc.2018.03.135
    [24]
    W.L. Hsu, Y.C. Yang, C.Y. Chen, and J.W. Yeh, Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance, Intermetallics, 89(2017), p. 105. doi: 10.1016/j.intermet.2017.05.015
    [25]
    M.H. Hsieh, M.H. Tsai, W.J. Shen, and J.W. Yeh, Structure and properties of two Al−Cr−Nb−Si−Ti high-entropy nitride coatings, Surf. Coat. Technol., 221(2013), p. 118. doi: 10.1016/j.surfcoat.2013.01.036
    [26]
    Z.C. Chang, Structure and properties of duodenary (TiVCrZrNbMoHfTaWAlSi)N coatings by reactive magnetron sputtering, Mater. Chem. Phys., 220(2018), p. 98. doi: 10.1016/j.matchemphys.2018.08.068
    [27]
    S.Y. Lin, S.Y. Chang, Y.C. Huang, F.S. Shieu, and J.W. Yeh, Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias, Surf. Coat. Technol., 206(2012), No. 24, p. 5096. doi: 10.1016/j.surfcoat.2012.06.035
    [28]
    P.K. Huang and J.W. Yeh, Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings, Scripta Mater., 62(2010), No. 2, p. 105. doi: 10.1016/j.scriptamat.2009.09.015
    [29]
    C.Y. Cheng and J.W. Yeh, High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties, Mater. Lett., 185(2016), p. 456. doi: 10.1016/j.matlet.2016.09.050
    [30]
    Q.F. Ye, K. Feng, Z.G. Li, F.G. Lu, R.F. Li, J. Huang, and Y.X. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Appl. Surf. Sci., 396(2017), p. 1420. doi: 10.1016/j.apsusc.2016.11.176
    [31]
    X.C. Li, Z.Y. Zheng, D. Dou, and J.C. Li, Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering, Mater. Res., 19(2016), No. 4, p. 802. doi: 10.1590/1980-5373-MR-2015-0536
    [32]
    S.B. Hung, C.J. Wang, Y.Y. Chen, J.W. Lee, and C.L. Li, Thermal and corrosion properties of V−Nb−Mo−Ta−W and V−Nb−Mo−Ta−W−Cr−B high entropy alloy coatings, Surf. Coat. Technol., 375(2019), p. 802. doi: 10.1016/j.surfcoat.2019.07.079
    [33]
    S. Zhao, L.X. He, X.X. Fan, C.H. Liu, J.P. Long, L. Wang, H. Chang, J. Wang, and W. Zhang, Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel, Surf. Coat. Technol., 375(2019), p. 215. doi: 10.1016/j.surfcoat.2019.07.033
    [34]
    S.C. Liang, Z.C. Chang, D.C. Tsai, Y.C. Lin, H.S. Sung, M.J. Deng, and F.S. Shieu, Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings, Appl. Surf. Sci., 257(2011), No. 17, p. 7709. doi: 10.1016/j.apsusc.2011.04.014
    [35]
    X.Y. Sun, X.W. Cheng, H.N. Cai, S. Ma, Z.Q. Xu, and T. Ali, Microstructure, mechanical and physical properties of FeCoNiAlMnW high-entropy films deposited by magnetron sputtering, Appl. Surf. Sci., 507(2020), art. No. 145131. doi: 10.1016/j.apsusc.2019.145131
    [36]
    K. von Fieandt, E.M. Paschalidou, A. Srinath, P. Soucek, L. Riekehr, L. Nyholm, and E. Lewin, Multi-component (Al,Cr,Nb,Y,Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance, Thin. Solid. Films, 693(2020), art. No. 137685. doi: 10.1016/j.tsf.2019.137685
    [37]
    P.K. Huang and J.W. Yeh, Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings, Thin. Solid. Films, 518(2009), No. 1, p. 180. doi: 10.1016/j.tsf.2009.06.020
    [38]
    W.B. Liao, S. Lan, L.B. Gao, H.T. Zhang, S. Xu, J. Song, X.L. Wang, and Y. Lu, Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering, Thin. Solid. Films, 638(2017), p. 383. doi: 10.1016/j.tsf.2017.08.006
    [39]
    C.Y. Wang, X.N. Li, Z.M. Li, Q. Wang, Y.H. Zheng, Y. Ma, L.X. Bi, Y.Y. Zhang, X.H. Yuan, X. Zhang, C. Dong, and P.K. Liaw, The resistivity–temperature behavior of AlxCoCrFeNi high-entropy alloy films, Thin. Solid. Films, 700(2020), art. No. 137895. doi: 10.1016/j.tsf.2020.137895
    [40]
    J.B. Lee, Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique, Mater. Chem. Phys., 99(2006), No. 2-3, p. 224.
    [41]
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting corrosion behaviour of austenitic stainless steels – Combining effects of Mn and Mo additions, Corros. Sci., 50(2008), No. 6, p. 1796. doi: 10.1016/j.corsci.2008.04.005
    [42]
    K. Sugimoto and Y. Sawada, Role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions, Corrosion, 32(1976), p. 2940.
    [43]
    M. Liu, X.Q. Cheng, X.G. Li, Y. Pan, and J. Li, Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution, Appl. Surf. Sci., 389(2016), p. 1182. doi: 10.1016/j.apsusc.2016.08.074
    [44]
    M. Liu, X.X. Cheng, X.G. Li, Z. Jin, and H.X. Liu, Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution, Constr. Build. Mater., 93(2015), p. 884. doi: 10.1016/j.conbuildmat.2015.05.073
    [45]
    C.D. Dai, H. Luo, J. Li, C.W. Du, Z.Y. Liu, and J.Z. Yao, X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid, Appl. Surf. Sci., 499(2020), art. No. 143903. doi: 10.1016/j.apsusc.2019.143903
    [46]
    X.L. Shang, Z.J. Wang, Q.F. Wu, J.C. Wang, J.J. Li, and J.K. Yu, Effect of Mo addition on corrosion behavior of high-entropy alloys CoCrFeNiMox in aqueous environments, Acta Metall. Sin., 32(2019), No. 1, p. 41. doi: 10.1007/s40195-018-0812-7
    [47]
    T.T. Shun, L.Y. Chang, and M.H. Shiu, Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy, Mater. Charact., 81(2013), p. 92. doi: 10.1016/j.matchar.2013.04.012
    [48]
    W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332. doi: 10.1016/j.actamat.2016.06.063
    [49]
    Z.F. Wu, X.D. Wang, Q.P. Cao, G.H. Zhao, J.X. Li, D.X. Zhang, J.J. Zhu, and J.Z. Jiang, Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1(x=0 and 2.5) high-entropy alloy films, J. Alloys Compd., 609(2014), p. 137. doi: 10.1016/j.jallcom.2014.04.094
    [50]
    B.R. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.L. Thomann, and D. Depla, High entropy alloy thin films deposited by magnetron sputtering of powder targets, Thin Solid Films, 580(2015), p. 71. doi: 10.1016/j.tsf.2015.02.070
    [51]
    B.R. Song, Y.H. Li, Z.H. Cong, Y.X. Li, Z.X. Song, and J. Chen, Effects of deposition temperature on the nanomechanical properties of refractory high entropy TaNbHfZr films, J. Alloys Compd., 797(2019), p. 1025. doi: 10.1016/j.jallcom.2019.05.121
    [52]
    D.C. Kong, A.N. Xu, C.F. Dong, F.X. Mao, K.X. Xiao, X.G. Li, and D.D. Macdonald, Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions, Corros. Sci., 116(2017), p. 34. doi: 10.1016/j.corsci.2016.12.010
    [53]
    M. Isakhani-Zakaria, S.R. Allahkaram, and H.A. Ramezani-Varzaneh, Evaluation of corrosion behaviour of Pb-Co3O4 electrodeposited coating using EIS method, Corros. Sci., 157(2019), p. 472. doi: 10.1016/j.corsci.2019.06.023
    [54]
    E. Huttunen-Saarivirta, V.E. Yudin, L.A. Myagkova, and V.M. Svetlichnyi, Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations, Prog. Org. Coat., 72(2011), No. 3, p. 269. doi: 10.1016/j.porgcoat.2011.04.015
    [55]
    R.M. Fonseca, R.B. Soares, R.G. Carvalho, E.K. Tentardini, V.F.C. Lins, and M.M.R. Castro, Corrosion behavior of magnetron sputtered NbN and Nb1−xAlxN coatings on AISI 316L stainless steel, Surf. Coat. Technol., 378(2019), art. No. 124987. doi: 10.1016/j.surfcoat.2019.124987
    [56]
    T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun, and X.G. Li, Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater, Int. J. Fatigue, 110(2018), p. 105. doi: 10.1016/j.ijfatigue.2018.01.008
    [57]
    Z. Lukács, Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits, J. Electroanal. Chem., 464(1999), No. 1, p. 68. doi: 10.1016/S0022-0728(98)00471-9
    [58]
    A. Carnot, I. Frateur, S. Zanna, B. Tribollet, I. Dubois-Brugger, and P. Marcus, Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS, Corros. Sci., 45(2003), p. 2513. doi: 10.1016/S0010-938X(03)00076-3
    [59]
    J.B. Jorcin, M.E. Orazem, N. Pébère, and B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochim. Acta, 51(2006), No. 8-9, p. 1473.
    [60]
    B. Astinchap, Fractal and statistical characterization of Ti thin films deposited by RF-magnetron sputtering: The effects of deposition time, Optik, 178(2019), p. 231. doi: 10.1016/j.ijleo.2018.10.050
    [61]
    M. Ahmadipour, M.F. Ain, S. Goutham, and Z.A. Ahmad, Effects of deposition time on properties of CaCu3Ti4O12 thin film deposited on ITO substrate by RF magnetron sputtering at ambient temperature, Ceram. Int., 44(2018), No. 15, p. 18817. doi: 10.1016/j.ceramint.2018.07.115
    [62]
    I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A, 21(2003), No. 5, p. S117. doi: 10.1116/1.1601610
    [63]
    S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, Biaxial alignment in sputter deposited thin films, Thin Solid Films, 515(2006), No. 4, p. 1229. doi: 10.1016/j.tsf.2006.06.027
    [64]
    T. Yamamoto, K. Fushimi, M. Seo, S. Tsuri, T. Adachi, and H. Habazaki, Depassivation–repassivation behavior of type-312L stainless steel in NaCl solution investigated by the micro-indentation, Corros. Sci., 51(2009), No. 7, p. 1545. doi: 10.1016/j.corsci.2008.11.020
    [65]
    Y.J. Kim, S.W. Kim, H.B. Kim, C.N. Park, Y.I. Choi, and C.J. Park, Effects of the precipitation of secondary phases on the erosion-corrosion of 25% Cr duplex stainless steel, Corros. Sci., 152(2019), p. 202. doi: 10.1016/j.corsci.2019.03.006
    [66]
    W. Zhang, M. Wang, L. Wang, C.H. Liu, H. Chang, J.J. Yang, J.L. Liao, Y.Y. Yang, and N. Liu, Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation, Appl. Surf. Sci., 485(2019), p. 108. doi: 10.1016/j.apsusc.2019.04.192
    [67]
    J. Liu, H. Liu, P.J. Chen, and J.B. Hao, Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding, Surf. Coat. Technol., 361(2019), p. 63. doi: 10.1016/j.surfcoat.2019.01.044
    [68]
    C.Y. Shang, E.G. Axinte, J. Sun, X.T. Li, P. Li, J.W. Du, P.C. Qiao, and Y. Wang, CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, Mater. Des., 117(2017), p. 193. doi: 10.1016/j.matdes.2016.12.076
    [69]
    Y.K. Shon, S.S. Joshi, S. Katakam, R. Shanker Rajamure, and N.B. Dahotre, Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior, Mater. Lett., 142(2015), p. 122. doi: 10.1016/j.matlet.2014.11.161
    [70]
    Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corros. Sci., 119(2017), p. 33. doi: 10.1016/j.corsci.2017.02.019
    [71]
    Y.J. Hsu, W.C. Chiang, and J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys., 92(2005), No. 1, p. 112. doi: 10.1016/j.matchemphys.2005.01.001
    [72]
    R.F. Zhao, B. Ren, B. Cai, Z.X. Liu, G.P. Zhang, and J.J. Zhang, Corrosion behavior of CoxCrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution, Results Phys., 15(2019), art. No. 102667. doi: 10.1016/j.rinp.2019.102667
    [73]
    Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corros. Sci., 52(2010), No. 10, p. 3481. doi: 10.1016/j.corsci.2010.06.025
    [74]
    P. Lu, J.E. Saal, G.B. Olson, T. Li, S. Sahu, O.J. Swanson, G.S. Frankel, A.Y. Gerard, and J.R. Scully, Computational design and initial corrosion assessment of a series of non-equimolar high entropy alloys, Scripta Mater., 172(2019), p. 12. doi: 10.1016/j.scriptamat.2019.07.003
    [75]
    Z.H. Han, W.N. Ren, J. Yang, A.L. Tian, Y.Z. Du, G. Liu, R. Wei, G. Zhang, and Y.Q. Chen, The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys, J. Alloys Compd., 816(2020), art. No. 152583. doi: 10.1016/j.jallcom.2019.152583
    [76]
    T.S. Li, O.J. Swanson, G.S. Frankel, A.Y. Gerard, P. Lu, J.E. Saal, and J.R. Scully, Localized corrosion behavior of a single-phase non-equimolar high entropy alloy, Electrochim. Acta, 306(2019), p. 71. doi: 10.1016/j.electacta.2019.03.104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(3358) PDF Downloads(104) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return