Yuhui Liu, Meng Tang, Shuang Zhang, Yuling Lin, Yingcai Wang, Youqun Wang, Ying Dai, Xiaohong Cao, Zhibin Zhang, and Yunhai Liu, U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 479-489. https://doi.org/10.1007/s12613-020-2154-5
Cite this article as:
Yuhui Liu, Meng Tang, Shuang Zhang, Yuling Lin, Yingcai Wang, Youqun Wang, Ying Dai, Xiaohong Cao, Zhibin Zhang, and Yunhai Liu, U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 479-489. https://doi.org/10.1007/s12613-020-2154-5
Research Article

U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method

+ Author Affiliations
  • Corresponding authors:

    Yuhui Liu    E-mail: liuyuhui@ecut.edu.cn

    Yunhai Liu    E-mail: walton_liu@163.com

  • Received: 18 June 2020Revised: 23 July 2020Accepted: 27 July 2020Available online: 30 July 2020
  • To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electrolysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R-MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy; the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted $ {\rm{UO}}_2^{2 + } $ by an electrostatic interaction; (2) exposed C, N, Mo, and S atoms complexed with U(VI) through coordination; (3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continuously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direction for the removal of radionuclide.
  • loading
  • Supplementary Informations12613-020-2154-5.docx
  • [1]
    B.G. Gebreyohannes, V. del Rosario Alberto, A. Yimam, G. Woldetinsae, and B. Tadesse, Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 727. doi: 10.1007/s12613-017-1456-8
    [2]
    Y. Liu, Z.P. Zhao, D.Z. Yuan, Y. Wang, Y. Dai, Y.A. Zhu, and J.W. Chew, Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption, Appl. Surf. Sci., 466(2019), p. 893. doi: 10.1016/j.apsusc.2018.10.097
    [3]
    Z.B. Zhang, Z.M. Dong, X.X. Wang, Y. Dai, X.H. Cao, Y.Q. Wang, R. Hua, H.T. Feng, J.R. Chen, Y.H. Liu, B.W. Hu, and X.K. Wang, Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies, Chem. Eng. J., 370(2019), p. 1376. doi: 10.1016/j.cej.2019.04.012
    [4]
    C. Jiang, Y. Liu, D.Z. Yuan, Y. Wang, J.B. Liu, and J.W. Chew, Investigation of the high U(VI) adsorption properties of phosphoric acid-functionalized heteroatoms-doped carbon materials, Solid State Sci., 104(2020), art. No. 106248. doi: 10.1016/j.solidstatesciences.2020.106248
    [5]
    T.Q. Yin, L. Chen, Y. Xue, Y.H. Zheng, X.P. Wang, Y.D. Yan, M.L. Zhang, G.L. Wang, F. Gao, and M. Qiu, Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl–KCl melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1657. doi: 10.1007/s12613-020-2112-2
    [6]
    Rashad, G.M. M.R. Mahmoud, and M.A. Soliman. Combination of coprecipitation and foam separation processes for rapid recovery and preconcentration of cesium radionuclides from water systems, Process Saf. Environ. Prot., 130(2019), p. 163. doi: 10.1016/j.psep.2019.08.007
    [7]
    W. Xiao, P. Zhou, X.H. Mao, and D.H. Wang, Ultrahigh aniline-removal capacity of hierarchically structured layered manganese oxides: Trapping aniline between interlayers, J. Mater. Chem. A, 3(2015), No. 16, p. 8676. doi: 10.1039/C5TA01305D
    [8]
    L. Lei, D.L. Huang, G.M. Zeng, M. Cheng, D.N. Jiang, C.Y. Zhou, S. Chen, and W.J. Wang, A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties, Coord. Chem. Rev., 399(2019), art. No. 213020. doi: 10.1016/j.ccr.2019.213020
    [9]
    Y. Kou, L. Zhang, B. Liu, L. Zhu, and T. Duan, Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution, J. Radioanal. Nucl. Chem., 323(2020), No. 1, p. 641. doi: 10.1007/s10967-019-06970-3
    [10]
    M.A. Macchione, R. Mendoza-Cruz, L. Bazán-Diaz, J.J. Velázquez-Salazar, U. Santiago, M.J. Arellano-Jiménez, J.F. Perez, M. José-Yacamán, and J.E. Samaniego-Benitez, Electron microscopy study of the carbon-induced 2H–3R–1T phase transition of MoS2, New J. Chem., 44(2020), No. 4, p. 1190. doi: 10.1039/C9NJ03850G
    [11]
    J.M. Luo, K.X. Fu, M. Sun, K. Yin, D. Wang, X. Liu, and J.C. Crittenden, Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38789. doi: 10.1021/acsami.9b14019
    [12]
    Y.X. Yao, K.L. Ao, P. Lv, and Q.F. Wei, MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction, Nanomaterials, 9(2019), No. 6, art. No. 844. doi: 10.3390/nano9060844
    [13]
    S. Dhar, V. Kranthi Kumar, T.H. Choudhury, S.A. Shivashankar, and S. Raghavan, Chemical vapor deposition of MoS2 layers from Mo–S–C–O–H system: Thermodynamic modeling and validation, Phys. Chem. Chem. Phys., 18(2016), No. 22, p. 14918. doi: 10.1039/C6CP01617K
    [14]
    Y.X. Zhang, S.X. Wang, H.H. Yu, H.J. Zhang, Y.X. Chen, L.M. Mei, A. Di Lieto, M. Tonelli, and J.Y. Wang, Atomic-layer molybdenum sulfide optical modulator for visible coherent light, Sci. Rep., 5(2015), art. No. 11342. doi: 10.1038/srep11342
    [15]
    A. Dash, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Molten salt shielded synthesis of oxidation prone materials in air, Nat. Mater., 18(2019), No. 5, p. 465. doi: 10.1038/s41563-019-0328-1
    [16]
    W. Weng, J.R. Yang, J. Zhou, D. Gu, and W. Xiao, Template-free electrochemical formation of silicon nanotubes from silica, Adv. Sci., 7(2020), No. 17, art. No. 2001492. doi: 10.1002/advs.202001492
    [17]
    D. Pang, W. Weng, J. Zhou, D. Gu, and W. Xiao, Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts, J. Energy Chem., 55(2021), p. 102. doi: 10.1016/j.jechem.2020.06.072
    [18]
    W. Weng, S.B. Wang, W. Xiao, and X.W. Lou, Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction, Adv. Mater., 32(2020), No. 29, art. No. 2001560. doi: 10.1002/adma.202001560
    [19]
    W. Weng, L.Z. Tang, and W. Xiao, Capture and electro-splitting of CO2 in molten salts, J. Energy Chem., 28(2019), p. 128. doi: 10.1016/j.jechem.2018.06.012
    [20]
    E. Ahmadi, R.O. Suzuki, T. Kikuchi, T. Kaneko, and Y. Yashima, Towards a sustainable technology for production of extra-pure Ti metal: Electrolysis of sulfurized Ti(C,N) in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1635. doi: 10.1007/s12613-020-2162-5
    [21]
    Y.P. Dou, D.Y. Tang, H.Y. Yin, and D.H. Wang, Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1695. doi: 10.1007/s12613-020-2169-y
    [22]
    D.H. Tian, Z.C. Han, M.Y. Wang, and S.Q. Jiao, Direct electrochemical N-doping to carbon paper in molten LiCl–KCl–Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1687. doi: 10.1007/s12613-020-2026-z
    [23]
    H.J. Luo, Y. Xue, Y.H. Zheng, Y.D. Yan, F.Q. Ma, M.L. Zhang, T.Q. Yin, F. Gao, and M. Qiu, Controllable preparation of carbon materials with different morphologies assisted by molten salt electrolysis, ECS J. Solid State Sci. Technol., 8(2019), No. 12, p. M122. doi: 10.1149/2.0181912jss
    [24]
    R. Jiang, L. Pi, B.W. Deng, L.Y. Hu, X.L. Liu, J.X. Cui, X.H. Mao, and D.H. Wang, Electric field-driven interfacial alloying for in situ fabrication of nano-Mo2C on carbon fabric as cathode toward efficient hydrogen generation, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38606. doi: 10.1021/acsami.9b11253
    [25]
    Y.H. Liu, X.Y. Jing, M.L. Zhang, Y.D. Yan, D.B. Ji, P. Li, H.B. Xu, and Y. Xue, Electrochemical synthesis and tribological properties of flower-like and sheet-like MoS2 in LiCl−KCl−(NH4)6Mo7O24–KSCN melt, Electrochimica Acta, 271(2018), p. 252. doi: 10.1016/j.electacta.2018.03.015
    [26]
    Y.H. Liu, C. Fang, S. Zhang, W.H. Zhong, Q.L. Wei, Y.C. Wang, Y. Dai, Y.Q. Wang, Z.B. Zhang, and Y.H. Liu, Effective adsorption of uranyl ions with different MoS2-exposed surfaces in aqueous solution, Surf. Interfaces, 18(2020), art. No. 100409. doi: 10.1016/j.surfin.2019.100409
    [27]
    M. Bhaumik, A. Maity, V.V. Srinivasu, and M.S. Onyango, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 190(2011), No. 1-3, p. 381. doi: 10.1016/j.jhazmat.2011.03.062
    [28]
    Y.L. Xu, J.Y. Chen, R. Chen, P.L. Yu, S. Guo, and X.F. Wang, Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent, Water Res., 160(2019), p. 148. doi: 10.1016/j.watres.2019.05.055
    [29]
    C.N. Zhong, S.Z. Su, L. Xu, Q. Liu, H.S. Zhang, P.P. Yang, M.L. Zhang, X.F. Bai, and J. Wang, Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater, Colloids Surf. A, 562(2019), p. 329. doi: 10.1016/j.colsurfa.2018.11.029
    [30]
    X. Lu, Y.W. Lin, H.F. Dong, W.H. Dai, X. Chen, X.H. Qu, and X.J. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction, Sci. Rep., 7(2017), art. No. 42309. doi: 10.1038/srep42309
    [31]
    K. Chang, X. Hai, H. Pang, H.B. Zhang, L. Shi, G.G. Liu, H.M. Liu, G.X. Zhao, M. Li, and J.H. Ye, Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution, Adv. Mater., 28(2016), No. 45, p. 10033. doi: 10.1002/adma.201603765
    [32]
    C.F. Zhong, W. Weng, X.X. Liang, D. Gu, and W. Xiao, One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation, Appl. Surf. Sci., 507(2020), art. No. 145072. doi: 10.1016/j.apsusc.2019.145072
    [33]
    J. van Baren, G.H. Ye, J.A. Yan, Z.P. Ye, P. Rezaie, P. Yu, Z. Liu, R. He, and C.H. Lui, Stacking-dependent interlayer phonons in 3R and 2H MoS2, 2D Mater., 6(2019), No. 2, art. No. 025022. doi: 10.1088/2053-1583/ab0196
    [34]
    P. Manivasagan, N. Quang Bui, S. Bharathiraja, M. Santha Moorthy, Y.O. Oh, K. Song, H. Seo, M. Yoon, and J. Oh, Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer, Sci. Rep., 7(2017), p. 43593. doi: 10.1038/srep43593
    [35]
    X.C. Li, G.L. Jiang, G.H. He, W.J. Zheng, Y. Tan, and W. Xiao, Preparation of porous PPy–TiO2 composites: Improved visible light photoactivity and the mechanism, Chem. Eng. J., 236(2014), p. 480. doi: 10.1016/j.cej.2013.10.057
    [36]
    S. Veli, A. Arslan, Ç. Gülümser, E. Topkaya, H. Kurtkulak, Ş. Zeybek, A. Dimoglo, and M. İşgören, Advanced treatment of pre-treated commercial laundry wastewater by adsorption process: Experimental design and cost evaluation, J. Ecol. Eng., 20(2019), No. 10, p. 165. doi: 10.12911/22998993/113136
    [37]
    D. Tan, M. Willatzen, and Z.L. Wang, Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures, Nano Energy, 56(2019), p. 512. doi: 10.1016/j.nanoen.2018.11.073
    [38]
    D. Xie, D.H. Wang, W.J. Tang, X.H. Xia, Y.J. Zhang, X.L. Wang, C.D. Gu, and J.P. Tu, Binder-free network-enabled MoS2–PPY–rGO ternary electrode for high capacity and excellent stability of lithium storage, J. Power Sources, 307(2016), p. 510. doi: 10.1016/j.jpowsour.2016.01.024
    [39]
    M.A. Salem, R.G. Elsharkawy, and M.F. Hablas, Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies, Eur. Polym. J., 75(2016), p. 577. doi: 10.1016/j.eurpolymj.2015.12.027
    [40]
    E. Fourest and J.C. Roux, Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH, Appl. Microbiol. Biotechnol., 37(1992), No. 3, p. 399. doi: 10.1007/BF00211001
    [41]
    W.P. Li, X.Y. Han, X.Y. Wang, Y.Q. Wang, W.X. Wang, H. Xu, T.S. Tan, W.S. Wu, and H.X. Zhang, Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite, Chem. Eng. J., 279(2015), p. 735. doi: 10.1016/j.cej.2015.05.060
    [42]
    S. Sadeghi, H. Azhdari, H. Arabi, and A.Z. Moghaddam, Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples, J. Hazard. Mater., 215-216(2012), p. 208. doi: 10.1016/j.jhazmat.2012.02.054
    [43]
    D.S. Karpovich and G.J. Blanchard, Direct measurement of the adsorption kinetics of alkanethiolate self-assembled monolayers on a microcrystalline gold surface, Langmuir, 10(1994), No. 9, p. 3315. doi: 10.1021/la00021a066
    [44]
    S. Deng, C.X. Yu, J.F. Niu, J.B. Liao, and X.H. Liu, Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water, Chem. Eng. J., 392(2020), art. No. 123815. doi: 10.1016/j.cej.2019.123815
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(3556) PDF Downloads(95) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return