Jian-ping Lai, Jia-xin Yu, and Jiong Wang, Effect of quenching-partitioning treatment on the microstructure, mechanical and abrasive properties of high carbon steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 676-687. https://doi.org/10.1007/s12613-020-2164-3
Cite this article as:
Jian-ping Lai, Jia-xin Yu, and Jiong Wang, Effect of quenching-partitioning treatment on the microstructure, mechanical and abrasive properties of high carbon steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 676-687. https://doi.org/10.1007/s12613-020-2164-3
Research Article

Effect of quenching-partitioning treatment on the microstructure, mechanical and abrasive properties of high carbon steel

+ Author Affiliations
  • Corresponding author:

    Jian-ping Lai    E-mail: ljp@swust.edu.cn

  • Received: 8 June 2020Revised: 3 August 2020Accepted: 5 August 2020Available online: 10 August 2020
  • The present work employed the X-ray diffraction, scanning electron microscopy, electron backscattered diffraction, and electron probe microanalysis techniques to identify the microstructural evolution and mechanical and abrasive behavior of high carbon steel during quenching-partitioning treatment with an aim to enhance the toughness and wear resistance of high carbon steel. Results showed that, with the increase in partitioning temperature from 250 to 400°C, the amount of retained austenite (RA) decreased resulting from the carbide precipitation effect after longer partitioning times. Moreover, the stability of RA generally increased because of the enhanced degree of carbon enrichment in RA. Given the factors affecting the toughness of high carbon steel, the stability of RA associated with size, carbon content, and morphology plays a significant role in determining the toughness of high carbon steel. The analysis of the wear resistance of samples with different mechanical properties shows that hardness is the primary factor affecting the wear resistance of high carbon steel, and the toughness is the secondary one.

  • loading
  • [1]
    R. Hossain, F. Pahlevani, and V. Sahajwalla, Surface modification of high carbon steel through microstructural engineering, Mater. Charact., 148(2019), p. 116. doi: 10.1016/j.matchar.2018.12.020
    [2]
    R. Hossain, F. Pahlevani, and V. Sahajwalla, Stability of retained austenite in high carbon steel – Effect of post-tempering heat treatment, Mater. Charact., 149(2019), p. 239. doi: 10.1016/j.matchar.2019.01.034
    [3]
    H.K.D.H. Bhadeshia, High performance bainitic steels, Mater. Sci. Forum, 500-501(2005), p. 63. doi: 10.4028/www.scientific.net/MSF.500-501.63
    [4]
    R. Hossain, F. Pahlevani, and V. Sahajwalla, Effect of small addition of Cr on stability of retained austenite in high carbon steel, Mater. Charact., 125(2017), p. 114. doi: 10.1016/j.matchar.2017.02.001
    [5]
    S. Zhang and K.O. Findley, Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels, Acta Mater., 61(2013), No. 6, p. 1895. doi: 10.1016/j.actamat.2012.12.010
    [6]
    G.H. Gao, H. Zhang, X.L. Gui, Z.L. Tan, B.Z. Bai, and Y.Q. Weng, Enhanced strain hardening capacity in a lean alloy steel treated by a “disturbed” bainitic austempering process, Acta Mater., 101(2015), p. 31. doi: 10.1016/j.actamat.2015.08.071
    [7]
    L.S. Malinov, V.L. Malinov, D.V. Burova, and V.V. Anichenkov, Increasing the abrasive wear resistance of low-alloy steel by obtaining residual metastable austenite in the structure, J. Frict. Wear, 36(2015), No. 3, p. 237. doi: 10.3103/S1068366615030083
    [8]
    X.Y. Long, F.C. Zhang, J. Kang, Z.N. Yang, D.D. Wu, K.M. Wu, and G.H. Zhang, Study on carbide-bearing and carbide-free bainitic steels and their wear resistance, Mater. Sci. Technol., 33(2017), No. 5, p. 615. doi: 10.1080/02670836.2016.1242205
    [9]
    H. Guo, A. Zhao, C. Zhi, R. Ding, and J. Wang, Two-body abrasion wear mechanism of super bainitic steel, Mater. Sci. Technol., 33(2017), No. 7, p. 893. doi: 10.1080/02670836.2016.1245239
    [10]
    G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, and B.Z. Bai, Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: The great potential of ultrafine filmy retained austenite, Acta Mater., 76(2014), p. 425. doi: 10.1016/j.actamat.2014.05.055
    [11]
    X.D. Wang, Z.H. Guo, and Y.H. Rong, Mechanism exploration of an ultrahigh strength steel by quenching–partitioning–tempering process, Mater. Sci. Eng. A, 529(2011), p. 35. doi: 10.1016/j.msea.2011.08.050
    [12]
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611. doi: 10.1016/S1359-6454(03)00059-4
    [13]
    H.R. Guo, G.H. Gao, X.L. Gui, R.D.K. Misra, and B.Z. Bai, Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation, Mater. Sci. Eng. A, 667(2016), p. 224. doi: 10.1016/j.msea.2016.05.004
    [14]
    J. Dong, X.S. Zhou, Y.C. Liu, C. Li, C.X. Liu, and H.J. Li, Effects of quenching–partitioning–tempering treatment on microstructure and mechanical performance of Nb–V–Ti microalloyed ultra-high strength steel, Mater. Sci. Eng. A, 690(2017), p. 283. doi: 10.1016/j.msea.2017.03.020
    [15]
    S. Yan, X.H. Liu, W.J. Liu, H.F. Lan, and H.Y. Wu, Microstructural evolution and mechanical properties of low-carbon steel treated by a two-step quenching and partitioning process, Mater. Sci. Eng. A, 640(2015), p. 137. doi: 10.1016/j.msea.2015.05.058
    [16]
    M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, and J. Sietsma, Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel, Acta Mater., 59(2011), No. 15, p. 6059. doi: 10.1016/j.actamat.2011.06.014
    [17]
    X.D. Tan, Y.B. Xu, X.L. Yang, Z.Q. Liu, and D. Wu, Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel, Mater. Sci. Eng. A, 594(2014), p. 149. doi: 10.1016/j.msea.2013.11.064
    [18]
    T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, and S. Takaki, Quenching and partitioning treatment of a low-carbon martensitic stainless steel, Mater. Sci. Eng. A, 532(2012), p. 585. doi: 10.1016/j.msea.2011.10.125
    [19]
    H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, and G.D. Wang, A novel design: Partitioning achieved by quenching and tempering (Q–T & P) in an aluminium-added low-density steel, Scripta Mater., 68(2013), No. 6, p. 370. doi: 10.1016/j.scriptamat.2012.10.018
    [20]
    J. Zhang, H. Ding, R.D.K. Misra, and C. Wang, Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel, Mater. Sci. Eng. A, 641(2015), p. 242. doi: 10.1016/j.msea.2015.06.050
    [21]
    J.P. Lai, L.P. Zhang, W. Gong, X. Xu, and C.A. Xiao, Two-body abrasion resistance of high carbon steel treated by quenching–partitioning–tempering process, Wear, 440-441(2019), art. No. 203096. doi: 10.1016/j.wear.2019.203096
    [22]
    Y.Y. Song, J.P. Cui, and L.J. Rong, Microstructure and mechanical properties of 06Cr13Ni4Mo steel treated by quenching–tempering–partitioning process, J. Mater. Sci. Technol., 32(2016), No. 2, p. 189. doi: 10.1016/j.jmst.2015.10.004
    [23]
    A.K. Behera and G.B. Olson, Nonequilibrium thermodynamic modeling of carbon partitioning in quench and partition (Q&P) steel, Scripta Mater., 147(2018), p. 6. doi: 10.1016/j.scriptamat.2017.12.027
    [24]
    H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, and X.J. Jin, Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon, Mater. Sci. Eng. A, 527(2010), No. 23, p. 6255. doi: 10.1016/j.msea.2010.06.045
    [25]
    M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao, and J. Sietsma, Influence of interface mobility on the evolution of austenite–martensite grain assemblies during annealing, Acta Mater., 57(2009), No. 15, p. 4548. doi: 10.1016/j.actamat.2009.06.024
    [26]
    N. Maheswari, S.G. Chowdhury, K.C.H. Kumar, and S. Sankaran, Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels, Mater. Sci. Eng. A, 600(2014), p. 12. doi: 10.1016/j.msea.2014.01.066
    [27]
    P. J. Jacques, F. Delannay, and J. Ladrière, On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels, Metall. Mater. Trans. A, 32(2001), No. 11, p. 2759. doi: 10.1007/s11661-001-1027-4
    [28]
    I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels, Metall. Mater. Trans. A, 35(2004), No. 8, p. 2331. doi: 10.1007/s11661-006-0213-9
    [29]
    D. De Knijf, R. Petrov, C. Föjer, and L.A.I. Kestens, Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel, Mater. Sci. Eng. A, 615(2014), p. 107. doi: 10.1016/j.msea.2014.07.054
    [30]
    R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, and N.H. van Dijk, High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels, Acta Mater., 60(2012), No. 2, p. 565. doi: 10.1016/j.actamat.2011.10.019
    [31]
    N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater., 53(2005), No. 20, p. 5439. doi: 10.1016/j.actamat.2005.08.017
    [32]
    E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels, Acta Mater., 55(2007), No. 20, p. 6713. doi: 10.1016/j.actamat.2007.08.040
    [33]
    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, The effect of morphology on the stability of retained austenite in a quenched and partitioned steel, Scripta Mater., 68(2013), No. 5, p. 321. doi: 10.1016/j.scriptamat.2012.11.003
    [34]
    H.S. Zhao, W. Li, X. Zhu, X.H. Lu, L. Wang, S. Zhou, and X.J. Jin, Analysis of the relationship between retained austenite locations and the deformation behavior of quenching and partitioning treated steels, Mater. Sci. Eng. A, 649(2016), p. 18. doi: 10.1016/j.msea.2015.09.088
    [35]
    B. Narayanaswamy, P. Hodgson, I. Timokhina, and H. Beladi, The impact of retained austenite characteristics on the two-body abrasive wear behavior of ultrahigh strength bainitic steels, Metall. Mater. Trans. A, 47(2016), No. 10, p. 4883. doi: 10.1007/s11661-016-3690-5
    [36]
    I. de Diego-Calderón, I. Sabirov, J.M. Molina-Aldareguia, C. Föjer, R. Thiessen, and R.H. Petrov, Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture properties, Mater. Sci. Eng. A, 657(2016), p. 136. doi: 10.1016/j.msea.2016.01.011
    [37]
    R. Ding, D. Tang, and A.M. Zhao, A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel, Scripta Mater., 88(2014), p. 21. doi: 10.1016/j.scriptamat.2014.06.014
    [38]
    S. Yan, X.H. Liu, W.J. Liu, H.F. Lan, and H.Y. Wu, Comparison on mechanical properties and microstructure of a C–Mn–Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes, Mater. Sci. Eng. A, 620(2015), p. 58. doi: 10.1016/j.msea.2014.09.047
    [39]
    V.G. Efremenko, O. Hesse, T.H. Friedrich, M. Kunert, M.N. Brykov, K. Shimizu, V.I. Zurnadzhy, and P. Šuchmann, Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite, Wear, 418-419(2019), p. 24. doi: 10.1016/j.wear.2018.11.003
    [40]
    J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, Sliding wear resistance and worn surface microstructure of nanostructured bainitic steel, Wear, 282-283(2012), p. 81. doi: 10.1016/j.wear.2012.02.008
    [41]
    F. Hu, K.M. Wu, and P.D. Hodgson, Effect of retained austenite on wear resistance of nanostructured dual phase steels, Mater. Sci. Technol., 32(2016), No. 1, p. 40. doi: 10.1179/1743284715Y.0000000061
    [42]
    A.D. Koval′, V.G. Efremenko, M.N. Brykov, M.I. Andrushchenko, R.A. Kulikovskii, and A.V. Efremenko, Principles for developing grinding media with increased wear resistance. Part 1. Abrasive wear resistance of iron-based alloys, J. Frict. Wear, 33(2012), No. 1, p. 39. doi: 10.3103/S1068366612010072
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2832) PDF Downloads(100) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return