Dong Wang, Sheng Pang, Chun-yue Zhou, Yan Peng, Zhi Wang, and Xu-zhong Gong, Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1618-1625. https://doi.org/10.1007/s12613-020-2165-2
Cite this article as:
Dong Wang, Sheng Pang, Chun-yue Zhou, Yan Peng, Zhi Wang, and Xu-zhong Gong, Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1618-1625. https://doi.org/10.1007/s12613-020-2165-2
Research Article

Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2

+ Author Affiliations
  • Corresponding author:

    Zhi Wang    E-mail: zwang@ipe.ac.cn

  • Received: 4 April 2020Revised: 11 August 2020Accepted: 12 August 2020Available online: 14 August 2020
  • The low O2− diffusion rate in the electro-deoxidation of titanium containing compounds by either the OS process or the FFC process leads to a low reaction speed and a low current efficiency. In this study, Ca3Ti2O7 was used as a precursor to improve the reduction speed of titanium. Because of the greater number of “diffusion channels” created in cathode as Ca2+ liberates from Ca3Ti2O7 precursor in the electro-deoxidation process, the O2− diffusion rate was improved significantly by using Ca3Ti2O7 instead of CaTiO3 as precursor. Parallel constant voltage electrolysis (3.2 V) confirms that Ca3Ti2O7 and CaTiO3 are reduced simultaneously because of their similar crystal structures. However, the reduction area of Ca3Ti2O7 spreads much faster than that of CaTiO3, indicating a difference in the O2− diffusion rate. Constant voltage cyclic voltammetry (CV) and theoretical analysis of the crystal structure were also conducted to compare the differences between Ca3Ti2O7 and CaTiO3. The results indicate that using a precursor with a greater number of soluble cations, titanium reduction speed can be greatly improved in the electro-deoxidation process. Finally, a new electrolysis method for converting and recycling excess CaO from the Ca3Ti2O7 precursor was proposed.

  • loading
  • [1]
    J.X. Song, Q.Y. Wang, G.J. Hu, X.B. Zhu, S.Q. Jiao, and H.M. Zhu, Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl–KCl melt, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 660. doi: 10.1007/s12613-014-0955-0
    [2]
    Z.Z. Fang, S. Middlemas, J. Guo, and P. Fan, A new, energy-efficient chemical pathway for extracting Ti metal from Ti minerals, J. Am. Chem. Soc., 135(2013), No. 49, p. 18248. doi: 10.1021/ja408118x
    [3]
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361. doi: 10.1038/35030069
    [4]
    C.C. Tang, X.J. Yu, J.S. Chen, Q. Han, and K.R. Liu, Preparation of titanium by electrochemical reduction of titanium dioxide powder in molten SrCl2–KCl, J. Alloys Compd., 684(2016), p. 699. doi: 10.1016/j.jallcom.2016.05.206
    [5]
    L. Kartal, M.B. Daryal, G.K. Şireli, and S. Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258. doi: 10.1007/s12613-019-1867-9
    [6]
    A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray, DC voltammetry of electro-deoxidation of solid oxides, Chem. Rev., 113(2013), No. 5, p. 2863. doi: 10.1021/cr200305x
    [7]
    W. Li, X.B. Jin, F.L. Huang, and G.Z. Chen, Metal-to-oxide molar volume ratio: The overlooked barrier to solid-state electroreduction and a “green” bypass through recyclable NH4HCO3, Angew. Chem. Int. Ed., 49(2010), No. 18, p. 3203. doi: 10.1002/anie.200906833
    [8]
    J.H. Du, Z.P. Xi, Q.Y. Li, Q. Xu, Y. Tang, and Z.X. Li, Effect of TiO2 cathode performance on preparation of Ti by electro-deoxidation, Trans. Nonferrous Met. Soc. China, 17(2007), p. s514. doi: 10.1016/S1003-6326(07)60125-3
    [9]
    D.T.L. Alexander, C. Schwandt, and D.J. Fray, The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway, Electrochim. Acta, 56(2011), No. 9, p. 3286. doi: 10.1016/j.electacta.2011.01.027
    [10]
    K. Jiang, X.H. Hu, M. Ma, D.H. Wang, G.H. Qiu, X.B. Jin, and G.Z. Chen, “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2, Angew. Chem. Int. Ed., 45(2006), No. 3, p. 428. doi: 10.1002/anie.200502318
    [11]
    J.C. Li, Z.C. Guo, J.T. Gao, and J.W. Li, Evaluation of isothermal separating perovskite phase from CaO–TiO2–SiO2–Al2O3–MgO melt by super gravity, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1171. doi: 10.1007/s11663-014-0062-7
    [12]
    M.M. Elcombe, E.H. Kisi, K.D. Hawkins, T.J. White, P. Goodman and S. Matheson, Structure determinations for Ca3Ti207, Ca4Ti3O10, Ca3.6Sr0.4Ti3Ol0 and a refinement of Sr3Ti207, Acta Crystallogr.,Sect. B:Struct. Sci, 47(1991), No. 3, p. 305. doi: 10.1107/S0108768190013416
    [13]
    Y. Peng, D. Wang, Z. Wang, X.Z. Gong, M.Y Wang, T. Qi, and F.C. Meng, Pivotal role of Ti–O bond lengths on crystalline structure transition of sodium titanates during electrochemical deoxidation in CaCl2–NaCl melt, J. Alloys Compd., 738(2018), p. 345. doi: 10.1016/j.jallcom.2017.12.148
    [14]
    M. Yashima and R. Ali, Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3, Solid State Ionics, 180(2009), No. 2-3, p. 120. doi: 10.1016/j.ssi.2008.11.019
    [15]
    K. Jacob and K. Abraham, Thermodynamic properties of calcium titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, J. Chem. Thermodyn., 41(2009), No. 6, p. 816. doi: 10.1016/j.jct.2009.02.001
    [16]
    D. Wang, J.J. Lu, J. Gou, Z. Wang, M.Y. Wang, X.Z. Gong, and S.H. Hao, A rapid method for the synthesis of perovskite (ATiO3, A = Ca, Sr, Ba) in molten chloride, Ceram. Int., 45(2019), No. 15, p. 19547. doi: 10.1016/j.ceramint.2019.06.113
    [17]
    W. Weng, M.Y. Wang, X.Z. Gong, Z. Wang, D. Wang, and Z.C. Guo, Electrochemical reduction behavior of soluble CaTiO3 in Na3AlF6–AlF3 melt for the preparation of metal titanium, J. Electorchem. Soc., 164(2017), No. 9, p. D551. doi: 10.1149/2.0611709jes
    [18]
    Y.J. Hu, X. Wang, J.S. Xiao, J.G. Hou, S.Q. Jiao, and H.M. Zhu, Electrochemical behavior of silicon(IV) Ion in BaF2–CaF2–SiO2 melts at 1573K, J. Electorchem. Soc., 160(2013), No. 3, p. D81. doi: 10.1149/2.038303jes
    [19]
    J. Mohanty, K.G. Mishra, R.K. Paramguru, and B.K. Mishra, Formation of calcium titanate during electroreduction of TiO2 in molten CaCl2 bath, Metall. Mater. Trans. B., 43(2012), No. 3, p. 513. doi: 10.1007/s11663-011-9625-z
    [20]
    K. Kobayashi, Y. Oka, and R.O. Suzuki, Influence of current density on the reduction of TiO2 in molten salt (CaCl2 + CaO), Mater. Trans., 50(2009), No. 12, p. 2704. doi: 10.2320/matertrans.MA200910
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2014) PDF Downloads(74) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return