Wolfgang Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 782-796. https://doi.org/10.1007/s12613-020-2166-1
Cite this article as:
Wolfgang Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 782-796. https://doi.org/10.1007/s12613-020-2166-1
Research ArticleOpen Access

New insights into the properties of high-manganese steel

+ Author Affiliations
  • Corresponding author:

    Wolfgang Bleck    E-mail: bleck@iehk.rwth-aachen.de

  • Received: 5 June 2020Revised: 10 August 2020Accepted: 12 August 2020Available online: 7 May 2021
  • In the Collaborative Research Centre 761’s “Steel ab initio - quantum mechanics guided design of new Fe based materials,” scientists and engineers from RWTH Aachen University and the Max Planck Institute for Iron Research conducted research on mechanism-controlled material development with a particular focus on high-manganese alloyed steels. From 2007 to 2019, a total of 55 partial projects and four transfer projects with industrial participation (some running until 2021) have studied material and process design as well as material characterization. The basic idea of the Collaborative Research Centre was to develop a new methodological approach to the design of structural materials. This paper focuses on selected results with respect to the mechanical properties of high-manganese steels, their underlying physical phenomena, and the specific characterization and modeling tools used for this new class of materials. These steels have microstructures that require characterization by the use of modern methods at the nm-scale. Along the process routes, the generation of segregations must be taken into account. Finally, the mechanical properties show a characteristic temperature dependence and peculiarities in their fracture behavior. The mechanical properties and especially bake hardening are affected by short-range ordering phenomena. The strain hardening can be adjusted in a never-before-possible range, which makes these steels attractive for demanding sheet-steel applications.

  • loading
  • [1]
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr. Opin. Solid State Mater. Sci., 15(2011), No. 4, p. 141. doi: 10.1016/j.cossms.2011.04.002
    [2]
    H. Kim, D.W. Suh, and N.J. Kim, Fe‒Al‒Mn‒C lightweight structural alloys: A review of the microstructures and mechanical properties, Sci. Technol. Adv. Mater., 14(2013), No. 1, art. No. 014205. doi: 10.1088/1468-6996/14/1/014205
    [3]
    B.C. De Cooman, K.-G. Chin, and J.K. Kim, High Mn TWIP Steels for Automotive Applications, [in] New Trends and Development in Automotive System, IntechOpen, 2011, p. 101.
    [4]
    D. Raabe, F. Roters, J. Neugebauer, I. Gutierrez-Urrutia, T. Hickel, W. Bleck, J.M. Schneider, J.E. Wittig, and J. Mayer, Ab initio-guided design of twinning-induced plasticity steels, MRS Bull., 41(2016), No. 4, p. 320. doi: 10.1557/mrs.2016.63
    [5]
    W. Bleck and D. Raabe, [in] The 4th International Conference on Medium and High Manganese Steels, Aachen, 2019.
    [6]
    W. Bleck, and D. Raabe, Physical metallurgy of high manganese steels, Metals, 9(2019), No. 10, art. No. 1053. doi: 10.3390/met9101053
    [7]
    C. Alves, J. Rezende, and D. Senk, Comparison Between Segregation of high-manganese steels from 2-D phase-field simulations, 1-D analytical theories, and solidification experiments, Steel Res. Int., 87(2016), No. 9, p. 1179. doi: 10.1002/srin.201500310
    [8]
    S.Zaefferer and N.N.Elhami, Theory and application of electron channelling contrast imaging under controlled diffraction conditions, Acta Mater., 75(2014), p. 20. doi: 10.1016/j.actamat.2014.04.018
    [9]
    J.I. Zhang, S. Zaefferer, and D. Raabe, A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations, Mater. Sci. Eng. A, 636(2015), p. 231. doi: 10.1016/j.msea.2015.03.078
    [10]
    M. Herbig, Spatially correlated electron microscopy and atom probe tomography: Current possibilities and future perspectives, Scripta Mater., 148(2018), p. 98. doi: 10.1016/j.scriptamat.2017.03.017
    [11]
    M.J. Yao, E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shanthraj, C. Scheu, S. Zaefferer, B. Gault, and D. Raabe, Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel, Acta Mater., 140(2017), p. 258. doi: 10.1016/j.actamat.2017.08.049
    [12]
    M. Herbig, P. Choi, and D. Raabe, Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography, Ultramicroscopy, 153(2015), p. 32. doi: 10.1016/j.ultramic.2015.02.003
    [13]
    A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck, Characterization and prediction of flow behaviour in high-manganese twinning-induced plasticity steels: Part I. Mechanisms maps and work-hardening behavior, Metall. Mater. Trans. A, 43(2012), No. 5, p. 1688. doi: 10.1007/s11661-011-0993-4
    [14]
    S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe‒Mn‒C alloys, Mater. Sci. Eng. A, 387-389(2004), p. 158. doi: 10.1016/j.msea.2004.01.059
    [15]
    P.H. Adler, G.B. Olsen, and W.S. Owen, Strain hardening of hadfield manganese steels, Metall. Mat. Trans. A, 17(1986), No. 10, p. 1725. doi: 10.1007/BF02817271
    [16]
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels, Metall. Mater. Trans. A, 40(2009), No. 13, p. 3076. doi: 10.1007/s11661-009-0050-8
    [17]
    M. Madivala, A. Schwedt, S.L. Wong, F. Roters, U. Prahl, and W. Bleck, Temperature dependent strain hardening and fracture behavior of TWIP steel, Int. J. Plast., 104(2018), p. 80. doi: 10.1016/j.ijplas.2018.02.001
    [18]
    Z.Y. Liang, Z.C. Luo, and M.X. Huang, Temperature dependence of strengthening mechanisms in a twinning-induced plasticity steel, Int. J. Plast., 116(2019), p. 192. doi: 10.1016/j.ijplas.2019.01.003
    [19]
    M. Madivala, A. Schwedt, U. Prahl, and W. Bleck, Anisotropy and strain rate effects on the failure behavior of TWIP steel: A multiscale experimental study, Int. J. Plast., 115(2019), p. 178. doi: 10.1016/j.ijplas.2018.11.015
    [20]
    J. von Appen, and R. Dronskowski, Carbon-induced ordering in manganese-rich austenite – A density-functional total-energy and chemical bonding study, Steel Res. Int., 82(2011), No. 2, p. 101. doi: 10.1002/srin.201000260
    [21]
    T.A. Timmerscheidt and R. Dronskowski, An ab initio study of carbon-induced ordering in austenitic Fe–Mn–Al–C Alloys, Steel Res. Int., 88(2017), No. 1, art. No. 1600292. doi: 10.1002/srin.201600292
    [22]
    R.B. McLellen, Cell modells for interstitial solid solutions, Acta Metall., 30(1982), No. 1, p. 317. doi: 10.1016/0001-6160(82)90071-2
    [23]
    J.H. Kang, T. Ingendahl, J. von Appen, R. Dronskowski, and W. Bleck, Impact of short-range ordering on yield strength of high manganese austenitic steels, Mater. Sci. Eng. A, 614(2014), p. 122. doi: 10.1016/j.msea.2014.07.016
    [24]
    J.H. Kang, T. Ingendahl, and W. Bleck, A constitutive model for the tensile behaviour of TWIP steels: Composition and temperature dependencies, Mater. Des., 90(2016), p. 340. doi: 10.1016/j.matdes.2015.10.126
    [25]
    B.C. De Cooman, Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater., 142(2018), p. 283. doi: 10.1016/j.actamat.2017.06.046
    [26]
    J.D. Yoo and K.T. Park, Microband-induced plasticity in a high Mn–Al–C light steel, Mater. Sci. Eng. A, 496(2008), No. 1-2, p. 417. doi: 10.1016/j.msea.2008.05.042
    [27]
    S. Wesselmecking, W.W. Song, Y. Ma, T. Roesler, H. Hofmann, and W. Bleck, Strain aging behaviour of an austenitic high-Mn Steel, Steel Res. Int., 89(2018), No. 9, art. No. 1700515. doi: 10.1002/srin.201700515
    [28]
    S. Sevsek, F. Brasche, C. Haase, and W. Bleck, Combined deformation twinning and short-range ordering causes serrated flow in high-manganese steels, Mater. Sci. Eng. A, 746(2019), p. 434. doi: 10.1016/j.msea.2019.01.042
    [29]
    W.W. Song, D. Bogdanovski, A. Yildiz, J. Houston, R. Dronskowski, and W. Bleck, On the Mn–C short-range-ordering in a high-strength high-ductility steel: Small angle neutron scattering and ab initio investigation, Metals, 8(2018), No. 1, art. No. 44. doi: 10.3390/met8010044
    [30]
    Y. Ma, Medium-manganese steels processed by austenite-reverted transformation annealing for automotive applications, Mater. Sci. Technol., 33(2017), No. 15, p. 1713. doi: 10.1080/02670836.2017.1312208
    [31]
    A. Gramlich, R. Emmrich, and W. Bleck, Austenite reversion tempering-annealing of 4wt.% manganese steels for automotive forging application, Metals, 9(2019), No. 5, art. No. 575. doi: 10.3390/met9050575
    [32]
    T. Allam, X.F. Guo, S. Sevsek, M. Lipinska-Chwałek, A. Hamada, E. Ahmed, and W. Bleck, Development of a Cr‒Ni‒V‒N medium manganese steel with balanced mechanical and corrosion properties, Metals, 9(2019), No. 6, art. No. 705. doi: 10.3390/met9060705
    [33]
    J.-K. Choi, I. W. Han, J.-T. Lee, D. Seo, and S. G. Lee, POSCO High Mn Steel Debut in LNG fuelled ship and onshore LNG terminal, [in] Proceedings of the 4th International Conference on Medium and High Manganese Steels, Aachen, 2019, p. 19.
    [34]
    H.W. Jin, N. Ma, A. Wasson, D. Fairchild, D. Lee, S. Lee, S.K. Kim, and J.K. Choi, Development of high Mn steel metallurgy for erosion resistant slurry pipeline, [in] Proceedings of the 4th International Conference on Medium and High Manganese Steels, Aachen, 2019, p. 314.
    [35]
    P. Köhnen, S. Ewalds, J.H. Schleifenbaum, A. Belyakov, and C. Haase, Controlling microstructure and mechanical properties of additively manufactured high-strength steels by tailored solidification, Addit. Manuf., 35(2020), art. No. 101389. doi: 10.1016/j.addma.2020.101389
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(4103) PDF Downloads(247) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return