Yan-peng Dou, Di-yong Tang, Hua-yi Yin,  and Di-hua Wang, Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1695-1702. https://doi.org/10.1007/s12613-020-2169-y
Cite this article as:
Yan-peng Dou, Di-yong Tang, Hua-yi Yin,  and Di-hua Wang, Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1695-1702. https://doi.org/10.1007/s12613-020-2169-y
Research Article

Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates

+ Author Affiliations
  • Corresponding author:

    Di-hua Wang    E-mail: wangdh@whu.edu.cn

  • Received: 31 May 2020Revised: 14 August 2020Accepted: 17 August 2020Available online: 20 August 2020
  • The Fe–Ni36 alloy was prepared via the one-step electrolysis of a mixed oxides precursor in a molten Na2CO3–K2CO3 eutectic melt at 750°C, where porous Fe2O3–NiO pellets served as the cathode and the Ni10Cu11Fe alloy was an inert anode. During the electrolysis, NiO was preferentially electro-reduced to Ni, then Fe2O3 was reduced and simultaneously alloyed with nickel to form the Fe–Ni36 alloy. Different cell voltages were applied to optimize the electrolytic conditions, and a relatively low energy consumption of 2.48 kW·h·kg−1 for production of FeNi36 alloy was achieved under 1.9 V with a high current efficiency of 94.6%. The particle size of the alloy was found to be much smaller than that of the individual metal. This process provides a low-carbon technology for preparing the Fe–Ni36 alloy via molten carbonates electrolysis.

  • loading
  • [1]
    W.D. Callister, Materials Science and Engineering: An Introduction, 7th ed., John Wiley & Sons, Inc., Hoboken, NJ, 2007, p. 1.
    [2]
    T. Nagayama, T. Yamamoto, T. Nakamura, and Y. Fujiwara, Properties of electrodeposited invar Fe–Ni alloy/SiC composite film, Surf. Coat. Technol., 322(2017), p. 70. doi: 10.1016/j.surfcoat.2017.05.023
    [3]
    T. Nagayama, T. Yamamoto, and T. Nakamura, Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the Invar composition range, Electrochim. Acta, 205(2016), p. 178. doi: 10.1016/j.electacta.2016.04.089
    [4]
    S.K. Sharma, F.J. Vastola, and P.L. Walker Jr., Reduction of nickel oxide by carbon: III. Kinetic studies of the interaction between nickel oxide and natural graphite, Carbon, 35(1997), No. 4, p. 535. doi: 10.1016/S0008-6223(97)83728-1
    [5]
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361. doi: 10.1038/35030069
    [6]
    A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray, DC voltammetry of electro-dexoidation of solid oxides, Chem. Rev., 113(2013), No. 5, p. 2863. doi: 10.1021/cr200305x
    [7]
    W. Xiao and D.H. Wang, The electrochemical reduction processes of solid compounds in high temperature molten salts, Chem. Soc. Rev., 43(2014), No. 10, p. 3215. doi: 10.1039/c3cs60327j
    [8]
    M. Ma, D.H. Wang, X.H. Hu, X.B. Jin, and G.Z. Chen, A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys, Chem. Eur. J., 12(2006), No. 19, p. 5075. doi: 10.1002/chem.200500697
    [9]
    S.Q. Jiao, L.L. Zhang, H.M. Zhu, and D.J. Fray, Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode, Electrochim. Acta, 55(2010), No. 23, p. 7016. doi: 10.1016/j.electacta.2010.06.033
    [10]
    Y. Zhu, M. Ma, D.H. Wang, K. Jiang, X.H. Hu, X.B. Jin, and G.Z. Chen, Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy, Chin. Sci. Bull., 51(2006), No. 20, p. 2535. doi: 10.1007/s11434-006-2105-1
    [11]
    G.H. Qiu, D.H. Wang, X.B. Jin, and G.Z. Chen, Preparation of Tb2Fe17 by direct electrochemical reduction of Tb4O7–Fe2O3 pellet in molten calcium chloride, Acta Metall. Sinica, 44(2008), No. 7, p. 859.
    [12]
    Y. Zhu, D.H. Wang, M. Ma, X.H. Hu, X.B. Jin, and G.Z. Chen, More affordable electrolytic LaNi5-type hydrogen storage powders, Chem. Commun., 2007, No. 24, p. 2515. doi: 10.1039/b701770g
    [13]
    G.H. Qiu, D.H. Wang, X.B. Jin, and G.Z. Chen, A direct electrochemical route from oxide precursors to the terbium–nickel intermetallic compound TbNi5, Electrochim. Acta, 51(2006), No. 26, p. 5785. doi: 10.1016/j.electacta.2006.03.019
    [14]
    H.Y. Yin, T. Yu, D.Y. Tang, X.F. Ruan, H. Zhu, and D.H. Wang, Electrochemical preparation of NiAl intermetallic compound from solid oxides in molten CaCl2 and its corrosion behaviors in NaCl aqueous solution, Mater. Chem. Phys., 133(2012), No. 1, p. 465. doi: 10.1016/j.matchemphys.2012.01.066
    [15]
    A. Cox and D.J. Fray, Electrolytic formation of iron from haematite in molten sodium hydroxide, Ironmaking Steelmaking, 35(2008), No. 8, p. 561. doi: 10.1179/174328108X293444
    [16]
    H.Y. Yin, D.Y. Tang, H. Zhu, Y. Zhang, and D.H. Wang, Production of iron and oxygen in molten K2CO3–Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode, Electrochem. Commun., 13(2011), No. 12, p. 1521. doi: 10.1016/j.elecom.2011.10.009
    [17]
    X.H. Cheng, D.Y. Tang, D.D. Tang, H. Zhu, and D.H. Wang, Cobalt powder production by elecro-reduction of Co3O4 granules in molten carbonates using an inert anode, J. Electrochem. Soc., 162(2015), No. 6, p. E68. doi: 10.1149/2.0991506jes
    [18]
    D.Y. Tang, H.Y. Yin, X.H. Cheng, W. Xiao, and D.H. Wang, Green production of nickel powder by electro-reduction of NiO in molten Na2CO3–K2CO3, Int. J. Hydrogen Energy, 41(2016), No. 41, p. 18699. doi: 10.1016/j.ijhydene.2016.06.078
    [19]
    A. Cox and D.J. Fray, Mechanistic investigation into the electrolytic formation of iron from iron(III) oxide in molten sodium hydroxide, J. Appl. Electrochem., 38(2008), No. 10, p. 1401. doi: 10.1007/s10800-008-9579-2
    [20]
    H.Y. Yin, X.H. Mao, D.Y. Tang, W. Xiao, L.R. Xing, H. Zhu, D.H. Wang, and D.R. Sadoway, Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis, Energy Environ. Sci., 6(2013), No. 5, p. 1538. doi: 10.1039/c3ee24132g
    [21]
    X.H. Cheng, H.Y. Yin, and D.H. Wang, Rearrangement of oxide scale on Ni–11Fe–10Cu alloy under anodic polarization in molten Na2CO3–K2CO3, Corros. Sci., 141(2018), p. 168. doi: 10.1016/j.corsci.2018.07.014
    [22]
    D.Y. Tang, K.Y. Zheng, H.Y. Yin, X.H. Mao, D.R. Sadoway, and D.H. Wang, Electrochemical growth of a corrosion-resistant multi-layer scale to enable an oxygen-evolution inert anode in molten carbonate, Electrochim. Acta, 279(2018), p. 250. doi: 10.1016/j.electacta.2018.05.095
    [23]
    D.Y. Tang, H.Y. Yin, W. Xiao, H. Zhu, X.H. Mao, and D.H. Wang, Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3–Na2CO3 using an inert anode, J. Electroanal. Chem., 689(2013), p. 109. doi: 10.1016/j.jelechem.2012.11.027
    [24]
    K.Y. Zheng, K.F. Du, X.H. Chen, R. Jiang, B.W. Deng, H. Zhu, and D.H. Wang, Nickel–iron–copper alloy as inert anode for ternary molten carbonate electrolysis at 650°C, J. Electrochem. Soc., 165(2018), No. 11, p. E572. doi: 10.1149/2.1211811jes
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2213) PDF Downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return