Yu-ting Wu, Chong Li, Ye-fan Li, Jing Wu, Xing-chuan Xia,  and Yong-chang Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 553-566. https://doi.org/10.1007/s12613-020-2177-y
Cite this article as:
Yu-ting Wu, Chong Li, Ye-fan Li, Jing Wu, Xing-chuan Xia,  and Yong-chang Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 553-566. https://doi.org/10.1007/s12613-020-2177-y
Invited Review

Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review

+ Author Affiliations
  • Corresponding authors:

    Chong Li    E-mail: lichongme@tju.edu.cn

    Yong-chang Liu    E-mail: ycliu@tju.edu.cn

  • Received: 12 June 2020Revised: 25 August 2020Accepted: 25 August 2020Available online: 27 August 2020
  • Ni3Al-based alloys have drawn much attention as candidates for high-temperature structural materials due to their excellent comprehensive properties. The microstructure and corresponding mechanical properties of Ni3Al-based alloys are known to be susceptible to heat treatment. Thus, a significant step is to employ various heat treatments to derive the desirable mechanical properties of the alloys. This paper briefly summarizes the recent advances in the microstructure evolution that occurs during the heat treatment of Ni3Al-based alloys. Aside from γ′ phase and γ phase, the precipitations of β phase, α-Cr precipitates, and carbides are also found in Ni3Al-based alloys with the addition of various alloying elements. The evolution in morphology, size, and volume fraction of various types of secondary phases during heat treatment are reviewed, involving γ′ phase, β phase, α-Cr precipitate, and carbides. The kinetics of the growth of precipitates are also analyzed. Furthermore, the influences of heat treatment on the mechanical properties of Ni3Al-based alloys are discussed.

  • loading
  • [1]
    C.T. Liu, and J.O. Stiegler, Ductile ordered intermetallic alloys, Science, 226(1984), No. 4675, p. 636. doi: 10.1126/science.226.4675.636
    [2]
    R. Kozubski, Long-range order kinetics in Ni3Al-based intermetallic compounds with L12-type superstructure, Prog. Mater. Sci., 41(1997), No. 1-2, p. 1. doi: 10.1016/S0079-6425(97)00002-9
    [3]
    P. Jozwik, W. Polkowski, and Z. Bojar, Applications of Ni3Al based intermetallic alloys—Current stage and potential perceptivities, Materials, 8(2015), No. 5, p. 2537. doi: 10.3390/ma8052537
    [4]
    Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, Y. Huang, H.J. Li, and H.P. Wang, Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression, J. Alloys Compd., 712(2017), p. 687. doi: 10.1016/j.jallcom.2017.04.116
    [5]
    S.A. David and S.C. Deevi, Welding of unique and advanced ductile intermetallic alloys for high-temperature applications, Sci. Technol. Weld. Joining, 22(2017), No. 8, p. 681. doi: 10.1080/13621718.2017.1304859
    [6]
    G. Karin, H.L. Luo, D. Feng, and C.H. Li, Ni3Al-based intermetallic alloys as a new type of high-temperature and wear-resistant materials, J. Iron Steel Res. Int., 14(2007), No. 5, p. 21. doi: 10.1016/S1006-706X(08)60045-X
    [7]
    Y.T. Wu, C. Li, X.C. Xia, H.Y. Liang, Q.Q. Qi, and Y.C. Liu, Precipitate coarsening and its effects on the hot deformation behavior of the recently-strengthened superalloys, J. Mater. Sci. Technol., 67(2021), p. 95. doi: 10.1016/j.jmst.2020.06.025
    [8]
    V.K. Sikka, S.C. Deevi, S. Viswanathan, R.W. Swindeman, and M.L. Santella, Advances in processing of Ni3Al-based intermetallics and applications, Intermetallics, 8(2000), No. 9-11, p. 1329. doi: 10.1016/S0966-9795(00)00078-9
    [9]
    M. Yamaguchi, H. Inui, and K. Ito, High-temperature structural intermetallics, Acta Mater., 48(2000), No. 1, p. 307. doi: 10.1016/S1359-6454(99)00301-8
    [10]
    N.S. Stoloff, C.T. Liu, and S.C. Deevi, Emerging applications of intermetallics, Intermetallics, 8(2000), No. 9-11, p. 1313. doi: 10.1016/S0966-9795(00)00077-7
    [11]
    M.H. Enayati and M. Salehi, Formation mechanism of Fe3Al and FeAl intermetallic compounds during mechanical alloying, J. Mater. Sci., 40(2005), No. 15, p. 3933. doi: 10.1007/s10853-005-0718-4
    [12]
    J.H. Schneibel, P.F. Tortorelli, R.O. Ritchie, and J.J. Kruzic, Optimization of Mo–Si–B Intermetallics, Metall. Mater. Trans. A, 36(2005), No. 3, p. 525. doi: 10.1007/s11661-005-0166-4
    [13]
    J.Y. Guo, Y.F. Li, C. Li, L.M. Yu, H.J. Li, Z.M. Wang, and Y.C. Liu, Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys, Mater. Charact., 171(2021), art. No. 110748. doi: 10.1016/j.matchar.2020.110748
    [14]
    L.J. Duan and Y.C. Liu, Relationships between elastic constants and EAM/FS potential functions for cubic crystals, Acta Metall. Sin., 56(2020), No. 1, p. 112.
    [15]
    W. Polkowski, P. Jóźwik, K. Karczewski, and Z. Bojar, Evolution of crystallographic texture and strain in a fine-grained Ni3Al (Zr, B) intermetallic alloy during cold rolling, Arch. Civ. Mech. Eng., 14(2014), No. 4, p. 550. doi: 10.1016/j.acme.2014.04.011
    [16]
    J.L. Pei, Y.F. Li, C. Li, Z.M. Wang, Y.C. Liu, and H.J. Li, Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys, J. Mater. Sci. Technol., 52(2020), p. 162. doi: 10.1016/j.jmst.2020.04.006
    [17]
    S.C. Deevi and V.K. Sikka, Nickel and iron aluminides: An overview on properties, processing, and applications, Intermetallics, 4(1996), No. 5, p. 357. doi: 10.1016/0966-9795(95)00056-9
    [18]
    L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, V.E. Ovcharenko, L.Z. Zhou, and H.Q. Ye, Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion, Intermetallics, 17(2009), No. 7, p. 572. doi: 10.1016/j.intermet.2009.01.004
    [19]
    J.G. Yu, Q.X. Zhang, and Z.F. Yue, Tensile mechanical properties of Ni3Al nanowires at intermediate temperature, RSC Adv., 4(2014), No. 40, art. No. 20789. doi: 10.1039/C4RA01431F
    [20]
    S.V. Raju, B.K. Godwal, A.K. Singh, R. Jeanloz, and S.K. Saxena, High-pressure strengths of Ni3Al and Ni−Al−Cr, J. Alloys Compd., 741(2018), p. 642. doi: 10.1016/j.jallcom.2018.01.142
    [21]
    C.T. Liu, C.L. White, and J.A. Horton, Effect of boron on grain-boundaries in Ni3Al, Acta Metall., 33(1985), No. 2, p. 213. doi: 10.1016/0001-6160(85)90139-7
    [22]
    H.B. Motejadded, M. Soltanieh, and S. Rastegari, An investigation about the effect of annealing conditions on microstructure in a Ni3Al base alloy, J. Alloys Compd., 486(2009), No. 1-2, p. 881. doi: 10.1016/j.jallcom.2009.07.086
    [23]
    J.S. Wang, Dislocation nucleation and the intrinsic fracture behavior of L12 intermetallic alloys, Acta Mater., 46(1998), No. 8, p. 2663. doi: 10.1016/S1359-6454(97)00468-0
    [24]
    S.K. Shee, S.K. Pradhan, and M. De, Effect of alloying on the microstructure and mechanical properties of Ni3Al, J. Alloys Compd., 265(1998), No. 1-2, p. 249. doi: 10.1016/S0925-8388(97)00291-0
    [25]
    K. Aoki and O. Izumi, On the ductility of the intermetallic compound Ni3Al, Trans. Jpn. Inst. Met., 19(1978), No. 4, p. 203. doi: 10.2320/matertrans1960.19.203
    [26]
    E.P. George, C.T. Liu, H. Lin, and D.P. Pope, Environmental embrittlement and other causes of brittle grain boundary fracture in Ni3Al, Mater. Sci. Eng. A, 192-193(1995), p. 277. doi: 10.1016/0921-5093(94)03236-X
    [27]
    Y.F. Gu, D.L. Lin, T.L. Lin, and J.T. Guo, Ductilization of Ni3Al by alloying with zirconium, Scripta Mater., 35(1996), No. 5, p. 609. doi: 10.1016/1359-6462(96)00187-X
    [28]
    E.P. George, C.T. Liu, and D.P. Pope, Environmental embrittlement: The major cause of room-temperature brittleness in polycrystalline Ni3Al, Scripta Metall. Mater., 27(1992), No. 3, p. 365. doi: 10.1016/0956-716X(92)90527-L
    [29]
    J.T. Guo, H. Li, and C. Sun, Effect of Zr, Cr and B addictives on microstructure and mechanical properties of Ni3Al alloys, Acta Metall. Sin. Engl. Ed., 3(1990), No. 3, p. 170.
    [30]
    Y.F. Li, J.T. Guo, L.Z. Zhou, and H.Q. Ye, Effect of recrystallization on room-temperature mechanical properties of Zr-doped Ni3Al alloy, Mater. Lett., 58(2004), No. 12-13, p. 1853. doi: 10.1016/j.matlet.2003.11.018
    [31]
    I. Baker, Improving the ductility of intermetallic compounds by particle-induced slip homogenization, Scripta Mater., 41(1999), No. 4, p. 409. doi: 10.1016/S1359-6462(99)00100-1
    [32]
    E.M. Schulson, T.P. Weihs, D.V. Viens, and I. Baker, The effect of grain size on the yield strength of Ni3Al, Acta Metall., 33(1985), No. 9, p. 1587. doi: 10.1016/0001-6160(85)90152-X
    [33]
    M. Takeyama and C.T. Liu, Effect of grain size on yield strength of Ni3Al and other alloys, J. Mater. Res., 3(1988), No. 4, p. 665. doi: 10.1557/JMR.1988.0665
    [34]
    P. Jóźwik and Z. Bojar, Analysis of grain size effect on tensile properties of Ni3Al based intermetallic strips, Arch. Metall. Mater., 52(2007), No. 2, p. 321.
    [35]
    X. Zhang, H.W. Li, M. Zhan, Z.B. Zheng, J. Gao, and G.D. Shao, Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations, J. Mater. Sci. Technol., 36(2020), p. 79. doi: 10.1016/j.jmst.2019.08.008
    [36]
    K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889. doi: 10.1007/s12613-019-1802-0
    [37]
    S.A. Sani, H. Arabi, S. Kheirandish, and G. Ebrahimi, Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ'-cobalt-based superalloy, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 222. doi: 10.1007/s12613-019-1727-7
    [38]
    Y.C. Liu, H.J. Zhang, Q.Y. Guo, X.S. Zhou, Z.Q. Ma, Y. Huang, and H.J. Li, Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency, Acta Metall. Sin., 54(2018), No. 11, p. 1653.
    [39]
    D.L. Cui, X.Y. Xie, S.S. Li, H. Zhang, and S.K. Gong, Heat treatment of a Ni3Al-based single crystal alloy IC32, Mater. Sci. Forum, 747-748(2013), p. 665. doi: 10.4028/www.scientific.net/MSF.747-748.665
    [40]
    Z.G. Kong, L. Ji, S.S. Li, Y.F. Han, and H.B. Xu, Effect of heat treatment on microstructure and mechanical properties for a Ni3Al base single crystal alloy DDIC6, Mater. Sci. Forum, 546-549(2007), p. 1443. doi: 10.4028/www.scientific.net/MSF.546-549.1443
    [41]
    E. Karakose and M. Keskin, Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy, Int. J. Mater. Res., 106(2015), No. 1, p. 29. doi: 10.3139/146.111145
    [42]
    J. Lapin, Effect of ageing on the microstructure and mechanical behaviour of a directionally solidified Ni3Al-based alloy, Intermetallics, 5(1997), No. 8, p. 615. doi: 10.1016/S0966-9795(97)00035-6
    [43]
    D. Lee, Effects of solution heat treatment on the microstructure, oxidation, and mechanical properties of a cast Ni3Al-based intermetallic alloy, Met. Mater. Int., 12(2006), No. 2, p. 153. doi: 10.1007/BF03027472
    [44]
    C. Ai, T.T. Zhai, M.Q. Ou, H. Zhang, L. Liu, S.S. Li, and S.K. Gong, Influence of heat treatment on microstructure of Ni3Al based single crystal superalloy, Mater. Res. Innov., 18(2014), Suppl. 4, p. 309.
    [45]
    J. Wu, Y.C. Liu, C. Li, Y.T. Wu, X.C. Xia, and H.J. Li, Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr content, Acta Metall. Sin., 56(2020), No. 1, p. 21.
    [46]
    Y. Mishima, S. Ochiai, and T. Suzuki, Lattice parameters of Ni(γ), Ni3Al(γ′) and Ni3Ga(γ′) solid solutions with additions of transition and B-subgroup elements, Acta Metall., 33(1985), No. 6, p. 1161. doi: 10.1016/0001-6160(85)90211-1
    [47]
    F. Zhou, Y. Zhou, J. Wang, J.M. Liang, H.Y. Gao, and M.D. Kang, Enlightening from γ, γ′ and β phase transformations in Al–Co–Ni alloy system: A review, Curr. Opin. Solid State Mater. Sci., 23(2019), No. 6, art. No. 100784. doi: 10.1016/j.cossms.2019.100784
    [48]
    W. Gale, and Z.M. Abdo, Cast, and aged β-NiAl-β′-Ni2AlTi-γ′-Ni3Al-α-Cr alloys: A microstructural and mechanical properties investigation, J. Mater. Sci., 34(1999), No. 18, p. 4425. doi: 10.1023/A:1004672802072
    [49]
    C.T. Liu, W. Jemian, H. Inouye, J.V. Cathcart, S.A. David, J.A. Horton, and M.L. Santella, Initial Development of Nickel and Nickel-Iron Aluminides for Structural Uses, Report ORNL-6067, Oak Ridge National Laboratory, Tennessee, 1984.
    [50]
    R. Yang, J.A. Leake, and R.W. Cahn, Chromium precipitation from β-Ni(Al, Ti) and γ'-Ni3(Al, Ti) in the alloy (Ni70Al20Ti10)0.9Cr0.1, Philos. Mag. A, 65(1992), No. 4, p. 961. doi: 10.1080/01418619208205600
    [51]
    C.T. Liu and V.K. Sikka, Nickel aluminides for structural use, JOM, 38(1986), No. 5, p. 19. doi: 10.1007/BF03257837
    [52]
    P. Pérez, P. González, G. Garcés, G. Caruana, and P. Adeva, Microstructure and mechanical properties of a rapidly solidified Ni3Al–Cr alloy after thermal treatments, J. Alloys Compd., 302(2000), No. 1-2, p. 137. doi: 10.1016/S0925-8388(99)00580-0
    [53]
    J. Wu, C. Li, Y.C. Liu, Y.T. Wu, Q.Y. Guo, H.J. Li, and H.P. Wang, Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy, Mater. Sci. Eng. A, 743(2019), p. 623. doi: 10.1016/j.msea.2018.11.126
    [54]
    J.Q. Li, Y.Y. Peng, J.B. Zhang, S. Jiang, S.P. Yin, J. Ding, Y.T. Wu, J. Wu, X.Q. Chen, X.C. Xia, X. He, and Y.C. Liu, Cyclic oxidation behavior of Ni3Al-based superalloy, Vacuum, 169(2019), art. No. 108938. doi: 10.1016/j.vacuum.2019.108938
    [55]
    P. Subramani and M. Manikandan, Development of gas tungsten arc welding using current pulsing technique to preclude chromium carbide precipitation in aerospace-grade alloy 80A, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 210. doi: 10.1007/s12613-019-1726-8
    [56]
    Y.G. Zhang, Y.F. Han, and M.C. Chaturvedi, TEM studies of ETA carbide precipitate particles in a DS cast Ni3Al base superalloy, Mater. Charact., 34(1995), No. 3, p. 205. doi: 10.1016/1044-5803(94)00079-Z
    [57]
    X.E. Zhang, H.L. Luo, S.P. Li, X. Cao, and S.Q. Li, Effection of alloying elements on microstructures of MX246 and MX246A Ni3Al-based alloys, J. Iron Steel Res. Int., 14(2007), No. 5, p. 45. doi: 10.1016/S1006-706X(08)60050-3
    [58]
    R.N. Wright and J.R.Knibloe, The influence of alloying on the microstructure and mechanical properties of P/M Ni3Al, Acta Metall. Mater., 38(1990), No. 10, p. 1993. doi: 10.1016/0956-7151(90)90310-D
    [59]
    H. Li, J.T. Guo, M.H. Tan, C. Sun, W.H. Lai, and S.H. Wang, Microstructure and mechanical properties of Ni3Al–Fe based alloy, Acta Metall. Sin. Engl. Ed., 6(1993), No. 1, p. 40.
    [60]
    C. Ai, S.S. Li, H. Zhang, L. Liu, Y. Ma, Y.L. Pei, and S.K. Gong, Effect of withdrawal rate on microstructure and lattice misfit of a Ni3Al based single crystal superalloy, J. Alloys Compd., 592(2014), p. 164. doi: 10.1016/j.jallcom.2013.12.262
    [61]
    P. Li, S.S. Li, and Y.F Han, Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX, Intermetallics, 19(2011), No. 2, p. 182. doi: 10.1016/j.intermet.2010.08.019
    [62]
    J.T. Wang, H.L. Luo, S.P. Li, and X. Cao, Effect of solution treatment on stress rupture property of MX246A alloy, Mater. Heat Treat., 39(2010), No. 12, p. 155.
    [63]
    C. Ai, M.Q. Ou, X.B. Zhao, Y.L. Pei, H. Zhang, L. Liu, S.S. Li, and S.K. Gong, Effect of heat treatment and long-term age on microstructure of a Ni3Al-based single crystal superalloy, Mater. Res. Innov., 19(2015), Suppl. 4, p. S209.
    [64]
    J.B. Singh, A. Verma, M.K. Thota, and J.K. Chakravartty, Brittle failure of Alloy 693 at elevated temperatures, Mater. Sci. Eng. A, 616(2014), p. 88. doi: 10.1016/j.msea.2014.08.015
    [65]
    Y.F. Li, C. Li, J. Wu, Y.T. Wu, Z.Q. Ma, L.M. Yu, H.J. Li, and Y.C. Liu, Formation of multiply twinned martensite plates in rapidly solidified Ni3Al-based superalloys, Mater. Lett., 250(2019), p. 147. doi: 10.1016/j.matlet.2019.05.012
    [66]
    J. Wu, C. Li, Y.C. Liu, X.C. Xia, Y.T. Wu, Z.Q. Ma, and H.P. Wang, Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy, Intermetallics, 109(2019), p. 48. doi: 10.1016/j.intermet.2019.03.010
    [67]
    Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F. Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493. doi: 10.1007/s12613-019-1756-2
    [68]
    H.Q. Feng, Z.B. Yang, Y.T. Bai, L. Zhang, and Y.L. Liu, Effect of Cr content and cooling rate on the primary phase of Al-2.5Mn alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1551. doi: 10.1007/s12613-019-1862-1
    [69]
    Y.F. Li, C. Li, Y.T. Wu, J. Wu, Z.Q. Ma, H.J. Li, and Y.C. Liu, Microstructural evolution and phase transformation of Ni3Al-based superalloys after thermal exposure, Vacuum, 171(2020), art. No. 109038. doi: 10.1016/j.vacuum.2019.109038
    [70]
    Y.F. Li, C. Li, J. Wu, H.J. Li, Y.C. Liu, and H.P. Wang, Microstructural feature and evolution of rapidly solidified Ni3Al-based superalloys, Acta Metall. Sin. Engl. Lett., 32(2019), No. 6, p. 764. doi: 10.1007/s40195-018-0839-9
    [71]
    X.T. Duan, S.P. Li, H.L. Luo, and J.T. Wang, Heat treatment process for Ni3Al-based wrought superalloy, J. Iron Steel Res., 27(2015), No. 11, p. 60.
    [72]
    M. Hadi and A.R. Kamali, Investigation on hot workability and mechanical properties of modified IC-221M alloy, J. Alloys Compd., 485(2009), No. 1-2, p. 204. doi: 10.1016/j.jallcom.2009.06.010
    [73]
    A.M. Jokisaari, S.S. Naghavi, C. Wolverton, P.W. Voorhees, and O.G. Heinonen, Predicting the morphologies of γ′ precipitates in cobalt-based superalloys, Acta Mater., 141(2017), p. 273. doi: 10.1016/j.actamat.2017.09.003
    [74]
    F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier, Coarsening and dissolution of γ′ precipitates during solution treatment of AD730™ Ni-based superalloy: Mechanisms and kinetics models, J. Alloys Compd., 658(2016), p. 981. doi: 10.1016/j.jallcom.2015.11.002
    [75]
    M.T. Kim, D.S. Kim, and O.Y. Oh, Effect of γ' precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy, Mater. Sci. Eng. A, 480(2008), No. 1-2, p. 218. doi: 10.1016/j.msea.2007.07.020
    [76]
    F. Liu and G.C. Yang, Effect of microstructure and γ′ precipitate from undercooled DD3 superalloy on mechanical properties, J. Mater. Sci., 37(2002), No. 13, p. 2713. doi: 10.1023/A:1015821117177
    [77]
    Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123. doi: 10.1007/s12613-019-1949-8
    [78]
    R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.
    [79]
    J. Wu, C. Li, Y.C. Liu, X.C. Xia, Z.X. Zheng, and H.P. Wang, Precipitation of intersected plate-like γ′ phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy, Mater. Sci. Eng. A, 767(2019), art. No. 138439. doi: 10.1016/j.msea.2019.138439
    [80]
    D. Lee, M.L. Santella, I.M. Anderson, and G.M. Pharr, Thermal aging effects on the microstructure and short-term oxidation behavior of a cast Ni3Al alloy, Intermetallics, 13(2005), No. 2, p. 187. doi: 10.1016/j.intermet.2004.07.046
    [81]
    Q.Y. Li, S.Q. Tian, H.C. Yu, N. Tian, Y. Su, and Y. Li, Effects of carbides and its evolution on creep properties of a directionally solidified nickel-based superalloy, Mater. Sci. Eng. A, 633(2015), p. 20. doi: 10.1016/j.msea.2015.02.056
    [82]
    X.M. Dong, X.L. Zhang, K. Du, Y.Z. Zhou, T. Jin, and H.Q. Ye, Microstructure of Carbides at Grain Boundaries in Nickel Based Superalloys, J. Mater. Sci. Technol., 28(2012), No. 11, p. 1031. doi: 10.1016/S1005-0302(12)60169-8
    [83]
    X.C. Xia, Y.Y. Peng, J. Ding, C. Li, J.B. Zhang, X.G. Chen, X. He, S.P. Yin, and Y.C. Liu, Precipitation and growth behavior of gamma prime phase in Ni3Al-based superalloy under thermal exposure, J. Mater. Sci., 54(2019), No. 20, p. 13368. doi: 10.1007/s10853-019-03821-0
    [84]
    D.Y. Lee, An investigation of thermal aging effects on the mechanical properties of a Ni3Al-based alloy by nanoindentation, J. Alloys Compd., 480(2009), No. 2, p. 347. doi: 10.1016/j.jallcom.2009.02.014
    [85]
    C.J. Li, G. Guo, Z.J. Yuan, W.D. Xuan, X. Li, Y.B. Zhong, and Z.M. Ren, Chemical segregation and coarsening of γ′ precipitates in Ni-based superalloy during heat treatment in alternating magnetic field, J. Alloys Compd., 720(2017), p. 272. doi: 10.1016/j.jallcom.2017.05.253
    [86]
    H.B. Motejadded, M. Soltanieh, and S. Rastegari, Coarsening kinetics of γ' precipitates in dendritic regions of a Ni3Al base alloy, J. Mater. Sci. Technol., 28(2012), No. 3, p. 221. doi: 10.1016/S1005-0302(12)60045-0
    [87]
    X.C. Wu, Y.S. Li, W. Liu, Z.Y. Hou, and M.Q. Huang, Dynamics evolution of γ′ precipitates size and composition interface between γ/γ′ phases in Ni–Al alloy at different aging temperatures, Rare Met., (2016), p. 1. doi: 10.1007/s12598-016-0700-0
    [88]
    L. Pichon, J.B. Dubois, S. Chollet, F. Larek, J. Cormie, and C. Templier, Low temperature nitriding behaviour of Ni3Al-like γ′ precipitates in nickel-based superalloys, J. Alloys Compd., 771(2019), p. 176. doi: 10.1016/j.jallcom.2018.08.187
    [89]
    M. Li, J.X. Song, S.S. Li, and Y.F. Han, Effects of long-term aging at 1070°C on microstructure of Ni3Al-base single-crystal alloy IC6SX, Rare Met., 30(2011), p. 345. doi: 10.1007/s12598-011-0300-y
    [90]
    J. Wu, C. Li, Y.C. Liu, Y.T. Wu, X.C. Xia, Y.F. Li, and H.P. Wang, Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy, Mater. Sci. Eng. A, 763(2019), art. No. 138158. doi: 10.1016/j.msea.2019.138158
    [91]
    Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, and H.J. Li, Coarsening behavior of γ′ precipitates in the γ′-γ area of a Ni3Al-based alloy, J. Alloys Compd., 771(2019), p. 526. doi: 10.1016/j.jallcom.2018.08.265
    [92]
    J. Lapin and A. Vaňo, Coarsening kinetics of α- and γ′-precipitates in a multiphase intermetallic Ni–Al–Cr–Ti type alloy with additions of Mo and Zr, Scripta Mater., 50(2004), No. 5, p. 571. doi: 10.1016/j.scriptamat.2003.11.057
    [93]
    J. Lapin, T. Pelachová, and O. Bajana, Microstructure and mechanical properties of a directionally solidified and aged intermetallic Ni–Al–Cr–Ti alloy with β-γ′-γ-α structure, Intermetallics, 8(2000), No. 12, p. 1417. doi: 10.1016/S0966-9795(00)00103-5
    [94]
    D. Lee and M.L. Santella, Thermal aging effects on the mechanical properties of as-cast Ni3Al-based alloy, Mater. Sci. Eng. A, 428(2006), No. 1-2, p. 196. doi: 10.1016/j.msea.2006.05.007
    [95]
    Y.F. Han, S.H. Li, Y. Jin, and M.C. Chaturvedi, Effect of 900–1150 °C aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6, Mater. Sci. Eng. A, 192-193(1995), p. 899. doi: 10.1016/0921-5093(94)03305-6
    [96]
    Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, and H.J. Li, Effect of initial microstructure on the hot deformation behavior of a Ni3Al-based alloy, Intermetallics, 113(2019), art. No. 106584. doi: 10.1016/j.intermet.2019.106584
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Share Article

    Article Metrics

    Article Views(5922) PDF Downloads(222) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return