Saisai Li, Haijun Zhang, Longhao Dong, Haipeng Liu, and Quanli Jia, Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 513-520. https://doi.org/10.1007/s12613-020-2180-3
Cite this article as:
Saisai Li, Haijun Zhang, Longhao Dong, Haipeng Liu, and Quanli Jia, Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 513-520. https://doi.org/10.1007/s12613-020-2180-3
Research Article

Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills

+ Author Affiliations
  • Corresponding author:

    Haijun Zhang    E-mail: zhanghaijun@wust.edu.cn

  • Received: 22 May 2020Revised: 22 August 2020Accepted: 26 August 2020Available online: 3 September 2020
  • Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused serious impacts on the human living environment and health. The traditional oil–water separation methods not only cause easily environmental secondary pollution but also a waste of limited resources. Therefore, in this work, three-dimensional (3D) graphitic carbon sphere (GCS) foams (collectively referred hereafter as 3D foams) with a 3D porous structure, pore size distribution of 25–200 μm, and high porosity of 62vol% were prepared for oil adsorption via gel casting using GCS as the starting materials. The results indicate that the water contact angle (WCA) of the as-prepared 3D foams is 130°. The contents of GCS greatly influenced the hydrophobicity, WCA, and microstructure of the as-prepared samples. The adsorption capacities of the as-prepared 3D foams for paraffin oil, vegetable oil, and vacuum pump oil were approximately 12–15 g/g, which were 10 times that of GCS powder. The as-prepared foams are desirable characteristics of a good sorbent and could be widely used in oil spill accidents.

  • loading
  • [1]
    H.T. Zhu, S.S. Qiu, W. Jiang, D.X. Wu, and C.Y. Zhang, Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup, Environ. Sci. Technol., 45(2011), No. 10, p. 4527. doi: 10.1021/es2002343
    [2]
    Y.C. Cheng, X.F. Li, Q. Xu, O. Garcia-Pineda, O.B. Andersen, and W.G. Pichel, SAR observation and model tracking of an oil spill event in coastal waters, Mar. Pollut. Bull., 62(2011), No. 2, p. 350. doi: 10.1016/j.marpolbul.2010.10.005
    [3]
    S. Songsaeng, P. Thamyongkit, and S. Poompradub, Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills, J. Adv. Res., 20(2019), p. 79. doi: 10.1016/j.jare.2019.05.007
    [4]
    M. Busto, E.E. Tarifa, and C.R. Vera, Extraction/adsorption as applied to the dearomatization of white mineral oil, Chem. Eng. Res. Des., 146(2019), p. 239. doi: 10.1016/j.cherd.2019.03.026
    [5]
    L. van Gelderen and G. Jomaas, Experimental procedure for laboratory studies of in situ burning: Flammability and burning efficiency of crude oil, J. Vis. Exp., 135(2018), .
    [6]
    H.J. Chieng and M.F. Chong, Boron adsorption on palm oil mill boiler (POMB) ash impregnated with chemical compounds, Ind. Eng. Chem. Res., 52(2013), No. 41, p. 14658. doi: 10.1021/ie401215n
    [7]
    V.M.F. Alexandre, F.V. do Nascimento, and M.C. Cammarota, Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater, Environ. Technol., 37(2016), No. 20, p. 2608. doi: 10.1080/09593330.2016.1156772
    [8]
    S. Ullah, S. Hussain, W. Ahmad, H. Khan, K.I. Khan, S.U. Khan, and S. Khan, Desulfurization of model oil through adsorption over activated charcoal and bentonite clay composites, Chem. Eng. Technol., 43(2020), No. 3, p. 564. doi: 10.1002/ceat.201900203
    [9]
    L. Zhang, H.Q. Li, X.J. Lai, X.J. Su, T. Liang, and X.R. Zeng, Thiolated graphene-based superhydrophobic sponges for oil-water separation, Chem. Eng. J., 316(2017), p. 736. doi: 10.1016/j.cej.2017.02.030
    [10]
    Q. Zhu, Q.M. Pan, and F.T. Liu, Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges, J. Phys. Chem. C, 115(2011), No. 35, p. 17464. doi: 10.1021/jp2043027
    [11]
    N. Jiang, R. Shang, S.G.J. Heijman, and L.C. Rietveld, Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms, Sep. Purif. Technol., 235(2020), art. No. 116152. doi: 10.1016/j.seppur.2019.116152
    [12]
    R.P. Li, C.Y. Lin, and X.T. Liu, Adsorption of tungstate on kaolinite: Adsorption models and kinetics, RSC Adv., 6(2016), No. 24, p. 19872. doi: 10.1039/C5RA24201K
    [13]
    Y. Zhao, F. Liu, and X.P. Qin, Adsorption of diclofenac onto goethite: Adsorption kinetics and effects of pH, Chemosphere, 180(2017), p. 373. doi: 10.1016/j.chemosphere.2017.04.007
    [14]
    S. Ahmed, A. Ramli, S. Yusup, and M. Farooq, Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption, Chem. Eng. Res. Des., 122(2017), p. 33. doi: 10.1016/j.cherd.2017.04.004
    [15]
    H.Y. Wang, E.Q. Wang, Z.J. Liu, D. Gao, R.X. Yuan, L.Y. Sun, and Y.J. Zhu, A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication, J. Mater. Chem. A, 3(2015), No. 1, p. 266. doi: 10.1039/C4TA03945A
    [16]
    D. Tian, R.Y. Chen, J. Xu, Y.W. Li, and X.H. Bu, A three-dimensional metal-organic framework for selective sensing of nitroaromatic compounds, APL Mater., 2(2014), No. 12, art. No. 124111. doi: 10.1063/1.4904879
    [17]
    J.T. Wang and Y.A. Zheng, Oil/water mixtures and emulsions separation of stearic acid-functionalized sponge fabricated via a facile one-step coating method, Sep. Purif. Technol., 181(2017), p. 183. doi: 10.1016/j.seppur.2017.03.024
    [18]
    X.M. Chen, J.A. Weibel, and S.V. Garimella, Continuous oil–water separation using polydimethylsiloxane-functionalized melamine sponge, Ind. Eng. Chem. Res., 55(2016), No. 12, p. 3596. doi: 10.1021/acs.iecr.6b00234
    [19]
    A.A. Nikkhah, H. Zilouei, A. Asadinezhad, and A. Keshavarz, Removal of oil from water using polyurethane foam modified with nanoclay, Chem. Eng. J., 262(2015), p. 278. doi: 10.1016/j.cej.2014.09.077
    [20]
    E.V. Gorb, P. Hofmann, A.E. Filippov, and S.N. Gorb, Oil adsorption ability of three-dimensional epicuticular wax coverages in plants, Sci. Rep., 7(2017), No. 1, art. No. 45483. doi: 10.1038/srep45483
    [21]
    Y. Feng and J.F. Yao, Design of melamine sponge-based three-dimensional porous materials toward applications, Ind. Eng. Chem. Res., 57(2018), No. 22, p. 7322. doi: 10.1021/acs.iecr.8b01232
    [22]
    Q.H. Wang, Y.W. Li, S.L. Jin, S.B. Sang, Y.B. Xu, X.F. Xu, and G.H. Wang, Enhanced mechanical properties of Al2O3–C refractories with silicon hybridized expanded graphite, Mater. Sci. Eng. A, 709(2018), p. 160. doi: 10.1016/j.msea.2017.10.046
    [23]
    Q. Gu, T. Ma, F. Zhao, Q.L. Jia, X.H. Liu, G.Q. Liu, and H.X. Li, Enhancement of the thermal shock resistance of MgO–C slide plate materials with the addition of nano-ZrO2 modified magnesia aggregates, J. Alloys Compd., 847(2020), art. No. 156339. doi: 10.1016/j.jallcom.2020.156339
    [24]
    D.H. Ding, L. Lv, G.Q. Xiao, J.Y. Luo, C.K. Lei, Y. Ren, S.L. Yang, P. Yang, and X. Hou, Improved properties of low-carbon MgO–C refractories with the addition of multilayer graphene/MgAl2O4 composite powders, Int. J. Appl. Ceram. Technol., 17(2020), No. 2, p. 645. doi: 10.1111/ijac.13347
    [25]
    M.Q. Liu, J.T. Huang, Q.M. Xiong, S.Q. Wang, Z. Chen, X.B. Li, Q.W. Liu, and S.W. Zhang, Micro-nano carbon structures with platelet, glassy and tube-like morphologies, Nanomaterials, 9(2019), No. 9, art. No. 1242. doi: 10.3390/nano9091242
    [26]
    X. Wang, Y. Chen, C. Yu, J. Ding, D. Guo, C.J. Deng, and H.X. Zhu, Preparation and application of ZrC-coated flake graphite for Al2O3–C refractories, J. Alloys Compd., 788(2019), p. 739. doi: 10.1016/j.jallcom.2019.02.239
    [27]
    Q. Gu, F. Zhao, X.H. Liu, and Q.L. Jia, Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates, Ceram. Int., 45(2019), No. 9, p. 12093. doi: 10.1016/j.ceramint.2019.03.107
    [28]
    M.F. Elkady, Equilibrium and kinetics behavior of oil spill process onto synthesized nano-activated carbon, Am. J. Appl. Chem., 3(2015), No. 3, art. No. 22. doi: 10.11648/j.ajac.s.2015030301.14
    [29]
    T. Yao, Y.G. Zhang, Y.P. Xiao, P.C. Zhao, L. Guo, H.W. Yang, and F.B. Li, The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite, J. Mol. Liq., 218(2016), p. 611. doi: 10.1016/j.molliq.2016.02.050
    [30]
    M. Wiśniewski, P.A. Gauden, A.P. Terzyk, P. Kowalczyk, A. Pacholczyk, and S. Furmaniak, Detecting adsorption space in carbon nanotubes by benzene uptake, J. Colloid Interface Sci., 391(2013), p. 74. doi: 10.1016/j.jcis.2012.09.026
    [31]
    S.S. Li, J.H. Liu, J.K. Wang, L. Han, H.J. Zhang, and S.W. Zhang, Catalytic preparation of graphitic carbon spheres for Al2O3–SiC–C castables, Ceram. Int., 44(2018), No. 11, p. 12940. doi: 10.1016/j.ceramint.2018.04.108
    [32]
    S.S. Li, J.H. Liu, J.K. Wang, Q. Zhu, X.W. Zhao, H.J. Zhang, and S.W. Zhang, Fabrication of graphitic carbon spheres and their application in Al2O3–SiC–C refractory castables, Int. J. Appl. Ceram. Technol., 15(2018), No. 5, p. 1166. doi: 10.1111/ijac.12877
    [33]
    S.S. Li, F.L. Li, J.K. Wang, L. Tian, H.J. Zhang, and S.W. Zhang, Preparation of hierarchically porous graphitic carbon spheres and their applications in supercapacitors and dye adsorption, Nanomaterials, 8(2018), No. 8, art. No. 625. doi: 10.3390/nano8080625
    [34]
    A. Kozbial, C. Trouba, H.T. Liu, and L. Li, Characterization of the intrinsic water wettability of graphite using contact angle measurements: Effect of defects on static and dynamic contact angles, Langmuir, 33(2017), No. 4, p. 959. doi: 10.1021/acs.langmuir.6b04193
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Share Article

    Article Metrics

    Article Views(1887) PDF Downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return