Xiong-feng Zeng, Jian-sheng Wang, Ying-na Zhao, Wen-li Zhang, and Meng-huan Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 503-510. https://doi.org/10.1007/s12613-020-2193-y
Cite this article as:
Xiong-feng Zeng, Jian-sheng Wang, Ying-na Zhao, Wen-li Zhang, and Meng-huan Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 503-510. https://doi.org/10.1007/s12613-020-2193-y
Research Article

Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation

+ Author Affiliations
  • Corresponding author:

    Jian-sheng Wang    E-mail: wangjiansheng@ncst.edu.cn

  • Received: 23 July 2020Revised: 9 September 2020Accepted: 11 September 2020Available online: 12 September 2020
  • We successfully constructed TiO2-pillared multilayer graphene nanocomposites (T-MLGs) via a facile method as follows: dodecanediamine pre-pillaring, ion exchange (Ti4+ pillaring), and interlayer in-situ formation of TiO2 by hydrothermal method. TiO2 nanoparticles were distributed uniformly on the graphene interlayer. The special structure combined the advantages of graphene and TiO2 nanoparticles. As a result, T-MLGs with 64.3wt% TiO2 showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin. The photodegradation rate of T-MLGs with 64.3wt% TiO2 was 78% under light-emitting diode light irradiation for 150 min. Meanwhile, the pseudo-first-order rate constant of T-MLGs with 64.3wt% TiO2 was 3.89 times than that of pristine TiO2. The composites also exhibited high stability and reusability after five consecutive photocatalytic tests. This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO2 nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control.

  • loading
  • [1]
    G.K. Dimitrakakis, E. Tylianakis, and G.E. Froudakis, Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage, Nano Lett., 8(2008), No. 10, p. 3166. doi: 10.1021/nl801417w
    [2]
    A.B. Caracciolo, P. Grenni, J. Rauseo, N. Ademollo, M. Cardoni, L. Rolando, and L. Patrolecco, Degradation of a fluoroquinolone antibiotic in an urbanized stretch of the River Tiber, Microchem. J., 136(2018), p. 43. doi: 10.1016/j.microc.2016.12.008
    [3]
    M. Malakootian, A. Nasiri, and M.A. Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun., 207(2020), No. 1, p. 56. doi: 10.1080/00986445.2019.1573168
    [4]
    X. Hu, X.J. Hu, Q.Q. Peng, L. Zhou, X.F. Tan, L.H. Jiang, C.F. Tang, H. Wang, S.H. Liu, Y.Q. Wang, and Z.Q. Ning, Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2, Chem. Eng. J., 380(2020), art. No. 122366. doi: 10.1016/j.cej.2019.122366
    [5]
    S.S. Imam, R. Adnan, and N.H.M. Kaus, Photocatalytic degradation of ciprofloxacin in aqueous media: A short review, Toxicol. Environ. Chem., 100(2018), No. 5-7, p. 518. doi: 10.1080/02772248.2018.1545128
    [6]
    P.W. Huo, Y.F. Tang, M.J. Zhou, J.Z. Li, Z.F. Ye, C.C. Ma, L.B. Yu, and Y.S. Yan, Fabrication of ZnWO4–CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics, J. Ind. Eng. Chem., 37(2016), p. 340. doi: 10.1016/j.jiec.2016.03.043
    [7]
    X. Zheng, S.Y. Chen, Z. Chen, R.Y. Chen, and X. Chen, Preparation of carbon-coated TiO2–CeO2 fibers for the photocatalytic degradation of ciprofloxacin, Chin. J. Appl. Chem., 30(2013), No. 11, p. 1326.
    [8]
    M. El-Kemary, H. El-Shamy, and I. El-Mehasseb, Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles, J. Lumin., 130(2010), No. 12, p. 2327. doi: 10.1016/j.jlumin.2010.07.013
    [9]
    R. Djellabi, M.F. Ghorab, G. Cerrato, S. Morandi, S. Gatto, V. Oldani, A.D. Michele, and C.L. Bianchi, Photoactive TiO2–montmorillonite composite for degradation of organic dyes in water, J. Photochem. Photobiol. A, 295(2014), p. 57. doi: 10.1016/j.jphotochem.2014.08.017
    [10]
    K. Nakata and A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C, 13(2012), No. 3, p. 169. doi: 10.1016/j.jphotochemrev.2012.06.001
    [11]
    Y.X. Zhang, Z.Y. Zhou, T. Chen, H.T. Wang, and W.J. Lu, Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol, J. Environ. Sci., 26(2014), No. 10, p. 2114. doi: 10.1016/j.jes.2014.08.011
    [12]
    J.J. Cai, S. Li, and G.W. Qin, Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation, Appl. Surf. Sci., 466(2019), p. 92. doi: 10.1016/j.apsusc.2018.10.022
    [13]
    J.J. Cai, H. Chen, S.L. Ding, and Q. Xie, Promoting photocarrier separation for photoelectrochemical water splitting in α-Fe2O3@C, J. Nanopart. Res., 21(2019), art. No. 153. doi: 10.1007/s11051-019-4592-4
    [14]
    J.J. Cai, S.L. Ding, G. Chen, Y.L. Sun, and Q. Xie, In situ electrodeposition of mesoporous aligned α-Fe2O3 nanoflakes for highly sensitive nonenzymatic H2O2 sensor, Appl. Surf. Sci., 456(2018), p. 302. doi: 10.1016/j.apsusc.2018.06.108
    [15]
    J.J. Cai, H. Chen, C.X. Liu, S.Q. Yin, H.J. Li, L.C. Xu, H. Liu, and Q. Xie, Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation, Dalton Trans., 49(2020), No. 32, p. 11282. doi: 10.1039/C9DT03962G
    [16]
    X.T. Pian, B.Z. Lin, Y.L. Chen, J.D. Kuang, K.Z. Zhang, and L.M. Fu, Pillared nanocomposite TiO2/Bi-doped hexaniobate with visible-light photocatalytic activity, J. Phys. Chem. C, 115(2011), No. 14, p. 6531. doi: 10.1021/jp1097553
    [17]
    B.C. Qiu, M.Y. Xing, and J.L. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries, J. Am. Chem. Soc., 136(2014), No. 16, p. 5852. doi: 10.1021/ja500873u
    [18]
    V.R. Posa, V. Annavaram, J.R. Koduru, P. Bobbala, Madhavi V, and A.R. Somala, Preparation of graphene–TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation, J. Exp. Nanosci., 11(2016), No. 9, p. 722. doi: 10.1080/17458080.2016.1144937
    [19]
    S. Kanan, M.A. Moyet, R.B. Arthur, and H.H. Patterson, Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies, Catal. Rev. Sci. Eng., 62(2020), No. 1, p. 1. doi: 10.1080/01614940.2019.1613323
    [20]
    P. Wang, J. Wang, X.F. Wang, H.G. Yu, J.G. Yu, M. Lei, and Y.G. Wang, One-step synthesis of easy-recycling TiO2–rGO nanocomposite photocatalysts with enhanced photocatalytic activity, Appl. Catal. B, 132-133(2013), p. 452. doi: 10.1016/j.apcatb.2012.12.009
    [21]
    G.X. Hu and B. Tang, Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation, Mater. Chem. Phys., 138(2013), No. 2-3, p. 608. doi: 10.1016/j.matchemphys.2012.12.027
    [22]
    F.W. Low and C.W. Lai, Recent developments of graphene–TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review, Renewable Sustainable Energy Rev., 82(2018), p. 103. doi: 10.1016/j.rser.2017.09.024
    [23]
    F.X. Liang, J.Z. Wang, Y. Wang, Y. Lin, L. Liang, Y. Gao, and L.B. Luo, Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection, Appl. Surf. Sci., 426(2017), p. 391. doi: 10.1016/j.apsusc.2017.07.051
    [24]
    D.Y. Zhang, C.W. Ge, J.Z. Wang, T.F. Zhang, Y.C. Wu, and F.X. Liang, Single-layer graphene–TiO2 nanotubes array heterojunction for ultraviolet photodetector application, Appl. Surf. Sci., 387(2016), p. 1162. doi: 10.1016/j.apsusc.2016.07.041
    [25]
    J. Chen, C. Li, and G.Q. Shi, Graphene materials for electrochemical capacitors, J. Phys. Chem. Lett., 4(2013), No. 8, p. 1244. doi: 10.1021/jz400160k
    [26]
    J.Q. Yang, Y.B. Hu, C.G. Jin, L.J. Zhuge, and X.M. Wu, Preparation of TiO2/single layer graphene composite films via a novel interface-facilitated route, Appl. Surf. Sci., 503(2020), art. No. 144334. doi: 10.1016/j.apsusc.2019.144334
    [27]
    C.J. Xu, Y.T. Wu, S. Li, J. Zhou, J. Chen, M. Jiang, H.D. Zhao, and G.W. Qin, Engineering the epitaxial interface of Pt–CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation, J. Mater. Sci. Technol., 40(2020), p. 39. doi: 10.1016/j.jmst.2019.08.036
    [28]
    Y.L. Liu, H. Chen, C.J. Xu, Y.M. Sun, S. Li, M. Jiang, and G.W. Qin, Control of catalytic activity of nano‐Au through tailoring the fermi level of support, Small, 15(2019), No. 34, art. No. 1901789. doi: 10.1002/smll.201901789
    [29]
    F. Cao, X. Yang, C. Shen, X. Li, J.M. Wang, G.W. Qin, S. Li, X.Y. Pang, and G.Q. Li, Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode, J. Mater. Chem. A, 8(2020), No. 15, p. 7245. doi: 10.1039/D0TA00826E
    [30]
    X.Q. Cao, J. Zhou, H.N. Wang, S. Li, W. Wang, and G.W. Qin, Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activity, J. Mater. Chem. A, 7(2019), No. 18, p. 10980. doi: 10.1039/C8TA10515D
    [31]
    H.H. Liu, D.B. Zhu, H. Shi, and X. Shao, Fabrication of a contamination-free interface between graphene and TiO2 single crystals, ACS Omega, 1(2016), No. 2, p. 168. doi: 10.1021/acsomega.6b00074
    [32]
    Y.L. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, and Y.G. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue, Chem. Eng. J., 193-194(2012), p. 203. doi: 10.1016/j.cej.2012.04.047
    [33]
    Y.H. Zhang, Z.R. Tang, X.Z. Fu, and Y.J. Xu, TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2–graphene truly different from other TiO2–carbon composite materials?, ACS Nano, 4(2010), No. 12, p. 7303. doi: 10.1021/nn1024219
    [34]
    Z.Y. Zhang, F. Xiao, Y.L. Guo, S. Wang, and Y.Q. Liu, One-pot self-sssembled three-dimensional TiO2–graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities, ACS Appl. Mater. Interfaces, 5(2013), No. 6, p. 2227. doi: 10.1021/am303299r
    [35]
    F.H. Zhao, B.H. Dong, R.J. Gao, G. Su, W. Liu, L. Shi, C.H. Xia, and L.X. Cao, A three-dimensional graphene–TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation, Appl. Surf. Sci., 351(2015), p. 303. doi: 10.1016/j.apsusc.2015.05.121
    [36]
    A.K. Singh, V. Chaudhary, A.K. Singh, and S.R.P. Sinha, Effect of TiO2 nanoparticles on electrical properties of chemical vapor deposition grown single layer graphene, Synth. Met., 256(2019), art. No. 116155. doi: 10.1016/j.synthmet.2019.116155
    [37]
    A.K. Singh, V. Chaudhary, A.K. Singh, and S.R.P. Sinha, Tailoring of electrical properties of TiO2 decorated CVD grown single-layer graphene by HNO3 molecular doping, Synth. Met., 264(2020), art. No. 116389. doi: 10.1016/j.synthmet.2020.116389
    [38]
    M.A.M. Júnior, A. Morais, and A.F. Nogueira, Boosting the solar-light-driven methanol production through CO2 photoreduction by loading Cu2O on TiO2-pillared K2Ti4O9, Microporous Mesoporous Mater., 234(2016), p. 1. doi: 10.1016/j.micromeso.2016.06.043
    [39]
    M. Herrera-Alonso, A.A. Abdala, M.J. McAllister, I.A. Aksay, and R.K. Prud'homme, Intercalation and stitching of graphite oxide with diaminoalkanes, Langmuir, 23(2007), No. 21, p. 10644. doi: 10.1021/la0633839
    [40]
    R.Y. Chen, J.W. Wang, H.N. Wang, W. Yao, and J. Zhong, Photocatalytic degradation of methyl orange in aqueous solution over titania-pillared α-zirconium phosphate, Solid State Sci., 13(2011), No. 3, p. 630. doi: 10.1016/j.solidstatesciences.2010.12.037
    [41]
    F.F. Guo, W. Xing, J. Zhou, L.M. Zhao, J.B. Zeng, Z. Liu, Q.Z. Xue, and Z.F. Yan, Studies in the capacitance properties of diaminoalkane-intercalated graphene, Electrochim. Acta, 148(2014), p. 220. doi: 10.1016/j.electacta.2014.10.019
    [42]
    S. Zargari, R. Rahimi, A. Ghaffarinejad, and A. Morsali, Enhanced visible light photocurrent response and photodegradation efficiency over TiO2–graphene nanocomposite pillared with tin porphyrin, J. Colloid Interface Sci., 466(2016), p. 310. doi: 10.1016/j.jcis.2015.12.046
    [43]
    C. Nethravathi and M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 46(2008), No. 14, p. 1994. doi: 10.1016/j.carbon.2008.08.013
    [44]
    H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, and J.H. Li, P25–graphene composite as a high performance photocatalyst, ACS Nano, 4(2010), No. 1, p. 380. doi: 10.1021/nn901221k
    [45]
    W.W. Zhang, H.L. Guo, H.Q. Sun, and R.C. Zeng, Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection, Appl. Surf. Sci., 382(2016), p. 128. doi: 10.1016/j.apsusc.2016.04.124
    [46]
    S.X. Min, F. Wang, and G.X. Lu, Graphene-induced spatial charge separation for selective water splitting over TiO2 photocatalyst, Catal. Commun., 80(2016), p. 28. doi: 10.1016/j.catcom.2016.03.015
    [47]
    T.-D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim, and S.H. Hur, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites, Chem. Eng. J., 170(2011), No. 1, p. 226. doi: 10.1016/j.cej.2011.03.060
    [48]
    X.R. Fan, B.Z. Lin, H. Liu, L.W. He, Y.L. Chen, and B.F. Gao, Remarkable promotion of photocatalytic hydrogen evolution from water on TiO2-pillared titanoniobate, Int. J. Hydrogen Energy, 38(2013), No. 2, p. 832. doi: 10.1016/j.ijhydene.2012.10.076
    [49]
    N. Li, J. Zhang, Y. Tian, J.H. Zhao, J. Zhang, and W. Zuo, Precisely controlled fabrication of magnetic 3D γ-Fe2O3@ZnO core-shell photocatalyst with enhanced activity: Ciprofloxacin degradation and mechanism insight, Chem. Eng. J., 308(2017), p. 377. doi: 10.1016/j.cej.2016.09.093
    [50]
    A. Salma, S. Thoröe-Boveleth, T.C. Schmidt, and J. Tuerk, Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin, J. Hazard. Mater., 313(2016), p. 49. doi: 10.1016/j.jhazmat.2016.03.010
    [51]
    S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher, and U. Fatima, Synthesis of TiO2/graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin, Composites Part B, 175(2019), art. No. 107120. doi: 10.1016/j.compositesb.2019.107120
    [52]
    J.J. Guo, S.M. Zhu, Z.X. Chen, Y. Li, Z.Y. Yu, Q.L. Liu, J.B. Li, C.L. Feng, and D. Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst, Ultrason. Sonochem., 18(2011), No. 5, p. 1082. doi: 10.1016/j.ultsonch.2011.03.021
    [53]
    H.W. Chen, Y. Ku, and Y.L. Kuo, Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis, Water Res., 41(2007), No. 10, p. 2069. doi: 10.1016/j.watres.2007.02.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2054) PDF Downloads(36) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return