Hongliang Zhao, Jingqi Wang, Fengqin Liu, and Hong Yong Sohn, Flow zone distribution and mixing time in a Peirce–Smith copper converter, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 70-77. https://doi.org/10.1007/s12613-020-2196-8
Cite this article as:
Hongliang Zhao, Jingqi Wang, Fengqin Liu, and Hong Yong Sohn, Flow zone distribution and mixing time in a Peirce–Smith copper converter, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 70-77. https://doi.org/10.1007/s12613-020-2196-8
Research Article

Flow zone distribution and mixing time in a Peirce–Smith copper converter

+ Author Affiliations
  • Corresponding author:

    Hong Yong Sohn    E-mail: h.y.sohn@utah.edu

  • Received: 29 June 2020Revised: 17 September 2020Accepted: 18 September 2020Available online: 19 September 2020
  • Peirce–Smith copper converting involves complex multiphase flow and mixing. In this work, the flow zone distribution and mixing time in a Peirce–Smith copper converter were investigated in a 1:5 scaled cold model. Flow field distribution, including dead, splashing, and strong-loop zones, were measured, and a dimensionless equation was established to determine the correlation of the effects of stirring and mixing energy with an error of <5%. Four positions in the bath, namely, injection, splashing, strong-loop, and dead zones, were selected to add a hollow salt powder tracer and measure the mixing time. Injecting a quartz flux through tuyeres or into the backflow point of the splashing wave through a chute was recommended instead of adding it through a crane hopper from the top of the furnace to improve the slag-making reaction.

  • loading
  • [1]
    Z.H. Liu and L.G. Xia, The practice of copper matte converting in China, Miner. Process. Extr. Metall., 128(2018), No. 1-2, p. 117.
    [2]
    P. Taskinen, G. Akdogan, I. Kojo, M. Lahtinen, and A. Jokilaakso, Matte converting in copper smelting, Miner. Process. Extr. Metall., 128(2018), No. 1-2, p. 58.
    [3]
    Y.A. Korol and S.S. Naboychenko, The tuyere in a protective shell to convert the nickel and copper mattes, Non-ferrous Met., 2018, No. 2, p. 3.
    [4]
    J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
    [5]
    J. Ma, Y.P. Song, P. Zhou, W. Cheng, and S.G. Chu, A mathematical approach to submerged horizontal buoyant jet trajectory and a criterion for jet flow patterns, Exp. Therm. Fluid Sci., 92(2018), p. 409. doi: 10.1016/j.expthermflusci.2017.11.011
    [6]
    J. Vaarno, J. Pitkälä, T. Ahokainen, and A. Jokilaakso, Modelling gas injection of a Peirce–Smith-converter, Appl. Math. Modell., 22(1998), No. 11, p. 907. doi: 10.1016/S0307-904X(98)10036-7
    [7]
    Q.F. Hou, D.Y. E, and A.B. Yu, Discrete particle modeling of lateral jets into a packed bed and micromechanical analysis of the stability of raceways, AIChE J., 62(2016), No. 12, p. 4240. doi: 10.1002/aic.15358
    [8]
    D.Y. E, Validation of CFD–DEM model for iron ore reduction at particle level and parametric study, Particuology, 51(2020), p. 163. doi: 10.1016/j.partic.2019.10.008
    [9]
    D.Y., E, Numerical investigation of mixed layer effect on permeability in a dynamic blast furnace, Eng. Rep., 2(2020), No. 5, art. No. e12166.
    [10]
    L.M. Wang, S.H. Yin, and A.X. Wu, Visualization of flow behavior in ore-segregated packed beds with fine interlayers, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 900. doi: 10.1007/s12613-020-2059-3
    [11]
    G.W. Tang, A.K. Silaen, H.J. Yan, Z.X. Cui, Z. Wang, H.B. Wang, K.L. Tang, P. Zhou, and C.Q. Zhou, CFD study of gas-liquid phase interaction inside a submerged lance smelting furnace for copper smelting, [in] Proceedings of 8th International Symposium on High-Temperature Metallurgical Processing, San Diego, 2017, p. 101.
    [12]
    H. Chen, J. Ma, and H.T. Liu, Least square spectral collocation method for nonlinear heat transfer in moving porous plate with convective and radiative boundary conditions, Int. J. Therm. Sci., 132(2018), p. 335. doi: 10.1016/j.ijthermalsci.2018.06.020
    [13]
    Y. Xue, F.N. Dang, Z.Z. Cao, F. Du, F. Liu, J. Ren, and F. Gao, Numerical analysis of heat and gas transfer characteristics during heat injection processes based on a thermo-hydro-mechanical model, Energies, 11(2018), No. 7, art. No. 1722. doi: 10.3390/en11071722
    [14]
    Z. Chen and H.F. Shen, Simulation of macrosegregation in a 36-t steel ingot using a multiphase model, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 200. doi: 10.1007/s12613-019-1875-9
    [15]
    D.G. Ma, W.Q. Chen, and X.M. Che, Physical modelling of slag splashing in nickel converter, Can. Metall. Q., 51(2012), No. 1, p. 31. doi: 10.1179/1879139511Y.0000000029
    [16]
    M. Rosales, A. Valencia, and R. Fuentes, A methodology for controlling slopping in copper converters by using lateral and bottom gas injection, Int. J. Chem. React. Eng., 7(2009), No. 1, p. 1.
    [17]
    A. Valencia, M. Rosales, R. Paredes, C. Leon, and A. Moyano, Numerical and experimental investigation of the fluid dynamics in a Teniente type copper converter, Int. Commun. Heat Mass Transf., 33(2006), No. 3, p. 302. doi: 10.1016/j.icheatmasstransfer.2005.12.009
    [18]
    H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas−liquid mass transfer and flow phenomena in a Peirce-Smith converter: A numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092. doi: 10.1007/s12613-019-1831-8
    [19]
    D.K. Chibwe, G. Akdogan, and J. Eksteen, Solid−liquid mass transfer in a Peirce−Smith converter: A physical modelling study, Metall. Min. Ind., 3(2011), No. 5, p. 202.
    [20]
    D.K. Chibwe, G. Akdogan, P. Taskinen, and J.J. Eksteen, Modelling of fluid flow phenomena in Peirce−Smith copper converters and analysis of combined blowing concept, J. S. Afr. I. Min. Metall., 115(2015), No. 5, p. 363. doi: 10.17159/2411-9717/2015/v115n5a4
    [21]
    A. Almaraz, C. López, M.A. Barrón, and G. Plascencia, Numerical and physical modeling of turbulence in a Peirce−Smith copper converter, J. Mater. Sci. Eng., 3(2013), No. 7, p. 510.
    [22]
    D.X. Wang, Y. Liu, Z.M. Zhang, T.A. Zhang, and X.L. Li, PIV measurements on physical models of bottom blown oxygen copper smelting furnace, Can. Metall. Q., 56(2017), No. 2, p. 221. doi: 10.1080/00084433.2017.1310362
    [23]
    T. Fabritius, P. Kupari, and J. Harkki, Physical modelling of a sidewall-blowing converter, Scand. J. Metall., 30(2001), No. 2, p. 57. doi: 10.1034/j.1600-0692.2001.300201.x
    [24]
    L. Shui, Z.X. Cui, X.D. Ma, M. Akbar Rhamdhani, A. Nguyen, and B.J. Zhao, Mixing phenomena in a bottom blown copper smelter: A water model study, Metall. Mate. Trans. B, 46(2015), No. 3, p. 1218. doi: 10.1007/s11663-015-0324-z
    [25]
    X. Zhao, H.L. Zhao, L.F. Zhang, and L.Q. Yang, Gas−liquid mass transfer and flow phenomena in the Peirce–Smith converter: A water model study, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 37. doi: 10.1007/s12613-018-1544-4
    [26]
    D.K. Chibwe, G. Akdogan, C. Aldrich, and R.H. Eric, CFD modelling of global mixing parameters in a Peirce–Smith converter with comparison to physical modelling, Chem. Prod. Process Model., 6(2011), No. 1, p. 22.
    [27]
    H. Turkoglu and B. Farouk, Mixing time and liquid circulation rate in steelmaking ladles with vertical gas injection, ISIJ Int., 31(1991), No. 12, p. 1371. doi: 10.2355/isijinternational.31.1371
    [28]
    H.L. Zhao, P. Yin, L.F. Zhang, and S. Wang, Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1369. doi: 10.1007/s12613-016-1360-7
    [29]
    G. Ascanio, Mixing time in stirred vessels: A review of experimental techniques, Chinese J. Chem. Eng., 23(2015), No. 7, p. 1065. doi: 10.1016/j.cjche.2014.10.022
    [30]
    H.L. Zhao, L.F. Zhang, P. Yin, and S. Wang, Bubble motion and gas-liquid mixing in metallurgical reactor with a top submerged lance, Int. J. Chem. React. Eng., 15(2017), No. 3, p. 1.
    [31]
    M. Shamsuddin and H. Y. Sohn, Constitutive topics in physical chemistry of high-temperature nonferrous metallurgy - A review: Part 1. Sulfide roasting and smelting, JOM, 71(2019), No. 9, p. 3253. doi: 10.1007/s11837-019-03620-7
    [32]
    I. Bellemans, E. De Wilde, N. Moelans, and K. Verbeken, Metal losses in pyrometallurgical operations - A review, Adv. Colloid. Interface Sci., 255(2018), p. 47. doi: 10.1016/j.cis.2017.08.001
    [33]
    C.P. Culshaw, A.G. Hunt, and M. Nilmani, Injection of silica flux to a nickel converter through a submerged tuyere, [in] Converting, Fire Refining and Casting: Proceedings of a Symposium Sponsored by the Extraction and Processing Division, Prometallurgical Committee, Francisco, 1993, 79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2133) PDF Downloads(159) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return